Register Number:

Date: 2 / / 11/2020

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 B.Sc. Mathematics - V SEMESTER SEMESTER EXAMINATION: NOVEMBER 2020 MT 5118 - MATHEMATICS-V

Time: $2\frac{1}{2}$ hrs

Max Marks: 70

This paper contains TWO printed pages and THREE parts

I Answer any FIVE of the following.

5 X 2 = 10

- 1. In a commutative ring R prove that $a \cdot 0 = 0$ and a(-b) = -ab, $\forall a, b \in R$.
- 2. Give an example of an infinite noncommutative ring without unity.
- 3. In the ring $\mathbb{Z}_n[i] = \{a+bi \mid a,b \in \mathbb{Z}_n\}$, if n divides a^2+b^2 , for some $a,b \in \mathbb{Z}_n$, then show that $\mathbb{Z}_n[i]$ has zero-divisors.
- 4. Prove that the ideal $6\mathbb{Z}$ is neither prime nor maximal in the ring \mathbb{Z} .
- 5. Define ring homomorphism and kernel of homomorphism.
- 6. Find a_0 in the Fourier series expansion of $f(x) = x^2 \cos x$ in the interval $(0, 2\pi)$.
- 7. Evaluate using improper integrals: $\int_{0}^{1} x^{4} (1-x)^{7} dx$
- 8. Evaluate: $\Gamma\left(-\frac{5}{2}\right)$

II Answer any SEVEN of the following.

 $7 \times 6 = 42$

- 9. Construct the Cayley's tables for addition and multiplication of the elements in the ring $\mathbb{Z}_2[i] = \{a + ib \mid a, b \in \mathbb{Z}_2\}$. Solve the equation $x^2 x 1 = i$ in the ring $\mathbb{Z}_2[i]$.
- 10. Show that $\mathbb{Q}[\sqrt{2},\sqrt{3}] = \{a_0 + a_1\sqrt{2} + a_2\sqrt{3} + a_3\sqrt{6} \mid a_i \in \mathbb{Q} \}$ is a sub ring of the ring \mathbb{R} . Also prove that $\mathbb{Q}[\sqrt{2},\sqrt{3}] = \mathbb{Q}[\sqrt{2}+\sqrt{3}]$.

- 11. Define the integral domain and the field. Prove that a finite integral domain is a field.
- 12. (a) Let R be a commutative ring of characteristic 2. Prove that the set of all idempotent elements in R, form a subring.
 - (b) Prove that zero is the only nilpotent element in the ring of integers \mathbb{Z} . (3+3)
- 13. Let $A = \langle 2 i \rangle$ be an ideal of the ring $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ of Gaussian integers. Show that the quotient ring $\mathbb{Z}[i]/A$ is equivalent to \mathbb{Z}_5 .
- 14. (a) Define a prime ideal and a maximal ideal.
 - (b) Let R be commutative ring with unity and A be an ideal of R. Prove that the quotient ring R/A is an integral domain if and only if A is a prime ideal. (2+4)
- 15. Show that the mapping $f: \mathbb{Z}_5 \longrightarrow \mathbb{Z}_{30}$, defined by $f(x) = 6x \pmod{30}$ is a ring homomorphism. Find $\ker(f)$.
- 16. Let φ be a ring homomorphism from a ring R to a ring S.
 - (i) If B is an ideal of S, then prove that $\varphi^{-1}(B)$ is an ideal of R. Hence show that $\ker(\varphi)$ is an ideal of R.
 - (ii) If $1 \in \mathbb{R}$, φ is onto and $S \neq \{0\}$, then prove that $\varphi(1) = 1'$ is the unity of S. (4+2)
- 17. Let $\varphi: \mathbb{Z}[x] \to \mathbb{Z}$ be defined by $\varphi(p(x)) = p(0), \forall p(x) \in \mathbb{Z}[x]$.
 - (i) Prove that φ is an epimorphism.
 - (ii) Using Fundamental Theorem of Homomorphism, prove that the ideal < x > is prime but not maximal in the ring $\mathbb{Z}[x]$. (3+3)

III Answer any THREE of the following.

 $3 \times 6 = 18$

- 18. Obtain Fourier series of the function $f(x) = x + x^2$ in the interval $(-\pi, \pi)$.
- 19. Obtain the Fourier cosine series of the function $f(x) = x \sin x$ in $(0, \pi)$.

20. Prove:
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

- 21. Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.
- 22. Prove that $\frac{\Gamma(n) \Gamma(n+\frac{1}{2})}{\Gamma(2n)} = \frac{\sqrt{\pi}}{2^{2n-1}}.$