Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 M.SC MATHEMATICS - IV SEMESTER
 SEMESTER EXAMINATION: APRIL 2022

(Examination conducted in July 2022)
MT DE0618: Representation Theory of Finite Groups
Duration: 2.5 Hours
Max. marks: 70

1. The paper contains two pages.
2. Attempt any SEVEN FULL questions.
3. Each question carries 10 marks.
4. Show that every representation of a finite group is equivalent to a unitary representation. Deduce that a representation of a finite group is either irreducible or decomposable.
5. (a) Let G be a finite group and $\phi: G \rightarrow G L(V)$ be a representation of degree 3 . Show that if there is no common eigenvector v to all ϕ_{g} with $g \in G$ then ϕ is irreducible .
(b) Show by an example that part (a) is false if we drop the finiteness condition.
6. (a) State and prove Schur's Lemma.
(b) Let G be an abelian group. Show that any irreducible representation of G has degree one.
7. (a) Let ϕ, ρ be irreducible representations of a finite group G. Show that

$$
\left\langle\chi_{\phi}, \chi_{\rho}\right\rangle= \begin{cases}1 & \text { if } \phi \sim \rho \\ 0 & \text { if } \phi \nsim \rho .\end{cases}
$$

(b) Let χ be a non trivial irreducible character of a finite group G. Show that $\sum_{g \in G} \chi(g)=0$. [$\left.\mathbf{4 ~ m}\right]$
5. (a) State and prove second orthogonality relation.
(b) Let G be a group of order 12 which has exactly four conjugacy classes. Complete the character table.

	$g_{1}=e$	g_{2}	g_{3}	g_{4}
χ_{1}	1	1	1	1
χ_{2}	1	1	ω	ω^{2}
χ_{3}	1	1	ω^{2}	ω
χ_{4}				

6. (a) Let G be a finite abelian group and $L(G)=\{f \mid f: G \rightarrow \mathbb{C}\}$. Show that $(L(G),+, *)$ is isomorphic to $(L(\widehat{G}),+, \cdot)$ as \mathbb{C}-algebras, where " $*$ " is the convolution product and "." is the point-wise multiplication.
(b) Let G be an abelian group and $a \in L(G)$. Let $A: L(G) \rightarrow L(G)$ be the convolution operator defined by $A(b)=a * b$. Show that A is a linear transformation with χ as an eigenvector with eigenvalue $\widehat{a}(\chi)$ for all $\chi \in \widehat{G}$.
[$\mathbf{4 m}$]
7. Draw the Cayley graph of \mathbb{Z}_{6} with respect to the set $S=\{ \pm[2], \pm[3]\}$. Write down the adjacency matrix of the graph and find all the eigenvalues of it. Also write down the corresponding eigenvectors for the positive eigenvalues.
[10 m]
8. (a) State and prove Dimension Theorem.
(b) Let G be a non-abelian group of order 39. Determine the degrees of irreducible representations of G and how many irreducible representations G has of each degree (up to equivalence). Determine the number of conjugacy classes of G.
[4 m]
9. (a) Let $\sigma: G \rightarrow S_{X}$ be a group action. Let $\mathcal{O}_{1}, \cdots, \mathcal{O}_{m}$ be the orbits of G on X and define $v_{i}=\sum_{x \in \mathcal{O}_{i}} x$. Then show that $\left\{v_{1}, \cdots, v_{m}\right\}$ is a basis for $\mathbb{C} X^{G}$.
(b) State and Prove Burnside's Lemma.
10. Compute the character table of S_{4}.
