Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.SC MATHEMATICS - IV SEMESTER SEMESTER EXAMINATION: APRIL 2022 (Examination conducted in July 2022) MT DE0618: Representation Theory of Finite Groups

Max. marks:70

- 1. The paper contains two pages.
- 2. Attempt any SEVEN FULL questions.
- 3. Each question carries 10 marks.
- 1. Show that every representation of a **finite** group is equivalent to a unitary representation. Deduce that a representation of a finite group is either irreducible or decomposable. [10 m]
- 2. (a) Let G be a **finite** group and $\phi : G \to GL(V)$ be a representation of degree 3. Show that if there is no common eigenvector v to all ϕ_g with $g \in G$ then ϕ is irreducible. [4 m]
 - (b) Show by an example that part (a) is false if we drop the finiteness condition. [6 m]
- 3. (a) State and prove Schur's Lemma.[6 m]
 - (b) Let G be an abelian group. Show that any irreducible representation of G has degree one.

[4 m]

4. (a) Let ϕ, ρ be irreducible representations of a finite group G. Show that

$$\langle \chi_{\phi}, \chi_{\rho} \rangle = \begin{cases} 1 & \text{if } \phi \sim \rho \\ 0 & \text{if } \phi \not\sim \rho. \end{cases}$$

[6m]

- (b) Let χ be a non trivial irreducible character of a finite group G. Show that $\sum_{g \in G} \chi(g) = 0$. [4 m]
- 5. (a) State and prove second orthogonality relation. [6 m]

(b) Let G be a group of order 12 which has exactly four conjugacy classes. Complete the character table. [4 m]

	$g_1 = e$	g_2	g_3	g_4
χ_1	1	1	1	1
χ_2	1	1	ω	ω^2
χ_3	1	1	ω^2	ω
χ_4				

- 6. (a) Let G be a finite abelian group and L(G) = {f | f : G → C}. Show that (L(G), +, *) is isomorphic to (L(G), +, ·) as C-algebras, where "*" is the convolution product and "·" is the point-wise multiplication.
 - (b) Let G be an abelian group and a ∈ L(G). Let A : L(G) → L(G) be the convolution operator defined by A(b) = a * b. Show that A is a linear transformation with χ as an eigenvector with eigenvalue â(χ) for all χ ∈ G.
 [4 m]
- 7. Draw the Cayley graph of \mathbb{Z}_6 with respect to the set $S = \{\pm [2], \pm [3]\}$. Write down the adjacency matrix of the graph and find all the eigenvalues of it. Also write down the corresponding eigenvectors for the positive eigenvalues. [10 m]
- 8. (a) State and prove Dimension Theorem.
 - (b) Let G be a non-abelian group of order 39. Determine the degrees of irreducible representations of G and how many irreducible representations G has of each degree (up to equivalence). Determine the number of conjugacy classes of G.
 [4 m]
- 9. (a) Let $\sigma : G \to S_X$ be a group action. Let $\mathcal{O}_1, \dots, \mathcal{O}_m$ be the orbits of G on X and define $v_i = \sum_{x \in \mathcal{O}_i} x$. Then show that $\{v_1, \dots, v_m\}$ is a basis for $\mathbb{C}X^G$. [6 m]
 - (b) State and Prove Burnside's Lemma.
- 10. Compute the character table of S_4 .

[**10 m**]

[4 m]

[6 m]