

Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE - 27

M.Sc. STATISTICS – II SEMESTER

SEMESTER EXAMINATION – JULY 2022

ST 8121: Distribution Theory

Time: 21/2 hrs

Max: 70 Marks

This question paper has TWO printed pages and TWO sections

SECTION – A

Answer any <u>SIX of the following:</u>

6x 3= 18

- 1. State and prove a memoryless property of exponential distribution.
- 2. For a random variable X with the following probability density function, find the mean and variance.

$$f(x) = \frac{x}{\alpha^2} e^{-\frac{x^2}{2\alpha^2}}, \qquad \alpha > 0, x > 0.$$

- 3. For any two random variables X and Y, prove that EE(X|Y) = E(X).
- 4. Define multinomial distribution. Give an example.
- 5. For a vector random variable *Y* with $E(Y) = \mu$, $V(Y) = \Sigma$ and square matrix A, show that $E(Y^TAY) = trace(A\Sigma) + \mu^T A\mu$.
- 6. State the pdf of the non-central F distribution. Mention its mean and variance.
- 7. Define order statistic and obtain the distribution function of first-order statistic.
- 8. If $X_1, ..., X_n$ be independent random variables from a distribution with pdf

$$f(x) = \alpha \frac{k^{\alpha}}{x^{\alpha+1}}, \qquad x \ge k, k > 0 \ \alpha > 0.$$

Find the distribution of $X_{(1)} = min(X_1, ..., X_n)$.

SECTION – B

II Answer any FOUR of the following:

- 9. A) If *X* follows exponential with rate λ , show that Y=[*X*] follows geometric distribution with parameter $1 e^{-\lambda}$.
 - B) Define negative binomial distribution. Find its mean and variance

 $4 \times 13 = 52$

- C) Define standard normal distribution. For a standard normal distribution *Z* show that $E(Z^{n+1}) = nE(Z^{n-1})$, *n* is a non-negative integer, and hence show that all odd ordered moments are zero. (3+5+5)
- 10. A) Define Weibull distribution. Find the distribution function and quantile function of Weibull distribution.
 - B) Find the mean and variance of the truncated Poisson distribution (truncated at zero)
 - C) Explain how to find the probability distribution of the range. (5+4+4)
- 11. A) Define multivariate normal random variable. Find the MGF of the same.
 - B) Let X and Y are two random variables with following joint probability density function (pdf)

$$f(x,y) = \begin{cases} \frac{1+xy}{4}, & 0 < x < 1, & 0 < y < 1\\ 0 & otheriwse \end{cases}$$

Find E (Y|X=0.5)

- 12. A) If X and Y are independently distributed as gamma with parameters (α , θ) and (β , θ) respectively. Find the probability distribution of $U = \frac{X}{X+Y}$ and V = X + Y. Check whether U and V are independent.
 - B) If *X* follows t distribution with n degrees of freedom, find the probability distribution of X^2 . (8+5)
- 13. A) Define non-central chi-square distribution and obtain its MGF. B) If $Y \sim N_p(\mu, \Sigma)$ show that $(Y - \mu)^T \Sigma^{-1} (Y - \mu) \sim \chi^2(p)$.
- 14. A) Let $X_1, ..., X_n$ be a random sample from a continuous distribution. Derive the probability density function of rth order statistic.
 - B) If $X_1, ..., X_n$ be a random sample from U (0, 1), find the probability distribution of rth order statistic.
 - C) If $X_1, ..., X_n$ are iid random variables from a pdf f(x), derive the joint probability density function of rth and sth order statistics Y_r and Y_s , where $1 \le r < s \le n$. (5+2+6)

(8+5)

(7+6)