ST.JOSEPH'S COLLEGE (AUTONMOUS), BANGALORE -27 B.Sc. CHEMISTRY – I SEMESTER MID-SEMESTER TEST - AUGUST 2019 CH 118: CHEMISTRY

Time: 1 hour

5

Max.Marks:30

Part - A

Answer any 4 out of 6 questions. Each question carries 2 marks.

2x4=8

- 1. Calculate the total number of electrons with the same spin in all the orbitals with n + 1 = 4 in an atom.
- 2. Calculate the minimum uncertainty in velocity of an object of mass 1.0g if its uncertainty in position is $5x10^{-26}$ m. Given, $h = 6.626x10^{-34}$ Js.
- 3. Write the quantum mechanical operator for momentum.
- 4. Explain why Na (Z=11) has a greater second ionisation enthalpy than that of Mg (Z=12).
- 5. What are exact differentials? Give an example.
- 6. How many moles of He atoms are present in 6.46g of He? The molar mass of He is 4g.

Part - B

Answer any 3 out of 5 questions. Each question carries 6 marks.

3x6 = 18

- 7.a) Write i) mathematical expression for normalisation of wave function.
 - ii) Schrodinger wave equation of H atom in spherical polar coordinates.
 - b) Explain the following: i) there cannot be more than two electrons in an orbital...
 - ii) 4s orbital is lower in energy than 3d orbital.

(3 + 3)

- 8.a) Draw the radial distribution curves for 2s and 2p orbitals and indicate the node(s), if any.
 - b) Set up the Born Heber cycle for CaF_2 and arrive at an expression for lattice energy for the same. (3 + 3)
- 9.a) Write an expression for the allowed energy levels for a particle in a three dimensional box and explain the terms. For this particle write the sets of qantum numbers of degenerate states corresponding to the energy state with total enrgy equal to 11h² / 8ma².
 - b) Define electron affinity. Explain why electron affinity of CI is greater than the electron affinities of F and Br. (3+3)
- 10. a) The bond dissociation energies of H-H, H-X and X-X are 436, 478 and 225 KJ/mol respectively. Assuming electronegativity of hydrogen to be 2.1, calculate

electronegativity of X.

- b) Explain why are group I elements i) form univalent ions and ii) strong reducing agents? (3+3)
- 11. a) Th depletion of ozone(O₃) in the stratosphere has been a matter of great concern among scientists in recent years. It is believed that ozone can react with NO that is discharged from the high altitude jet planes. The reaction is

$$O_3$$
 + NO \rightarrow O_2 + NO_2

If 0.740g of ozone reacts with 0.670g of NO, how many grams of NO₂ will be produced. Which compound is the limiting reagent? Calculate the number of moles of the excess reagent remaining at the end of the reaction. Molar masses of O and N are 16g and 14g respectively.

(b) Disulphide dichloride (S₂Cl₂) is used in the vulcanization of rubber. It is prepared by heating sulphur in an atmosphere of chlorine.

$$S_8 + 4Cl_2 \rightarrow 4S_2Cl_2$$

What is the theoretical yield of S_2Cl_2 in grams when 4.06g of S_8 are heated with 6.24g of Cl_2 ? If actual yield of S_2Cl_2 is 6.55g, what is the percent yield?

Note: Molar masses of CI and S are 35.5g and 32g respectively. (3 + 3)

Part - C

Answer any 1 out of 2 questions. Each question carries 6 marks.

1x4 = 4

M- -

12.Calclate the work done when 50g of iron react with hydrochloric acid in i) a closed vessel of fixed volume; ii) an open beaker at 298K. Molar mass of Fe is 56g. Assume volume of Fe and HCI mixture is negligibly small compared to volume of H₂ released in the reaction:

Zn + 2HCl
$$\rightarrow$$
 ZnCl₂ + H₂
R = 0.0821LatmK⁻¹ mol⁻¹

13.An electron is confined in a molecule of length 1x10⁻⁹ m. What is i) the minimum energy; ii) the minimum excitation energy from the minimum energy state?

Mass of an electron is 9.1x10⁻³¹ kg..