ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

B.Sc. STATISTICS – III SEMESTER
-SEMESTER EXAMINATION – AUGUST 20

MID-SEMESTER EXAMINATION – AUGUST 2019 ST 318: STATISTICAL INFERENCE – I

Time: 1 Hour

Max: 30 marks

This question paper has three parts and 1 printed page

I Answer any <u>five</u> of the following:

 $5 \times 2 = 10$

- 1. What is point estimation? and mention properties of a good estimator
- 2. Give one example for each of the following
 - i) parameter
- ii) sample space
- iii) statistic
- vi) estimator
- 3. Define minimum variance unbiased estimator
- 4. Define single parameter exponential family and mention any two members of SPE family
- 5. If $X \sim \text{Poisson}(\theta)$, verify that $T = \overline{X}$ is unbiased estimator for θ .
- 6. Define relative efficiency
- 7. Give an example for invariance property of consistent estimator

II Answer any two of the following:

 $2 \times 5 = 10$

- 8. Let $X_1 ildots X_n$ denote a random sample from a Uniform $(0, \theta)$ distribution, with $\theta > 0$ as the unknown parameter. Let \overline{X} denote the sample mean.
 - a) Is \bar{X} unbiased for θ ? If not, find an unbiased estimator for θ
 - b) Find the variance of the estimator derived in the previous part.

OR

The failure times of 23 newly manufactured resistors were observed. The sample mean was found to be 273 hr and the sample variance 849 hr². Assuming that the failure time is uniformly distributed, estimate its parameters a and b using the method of moments.

- 9. Define maximum likelihood estimator and write down any three properties of MLE
- 10. What do you mean by method of moment estimation? Derive an estimator of θ by method of moments when $X \sim NB(1, \theta)$

III Answer any one of the following:

 $1 \times 10 = 10$

- 11. a) Let $X_1, X_2, \dots X_n$, be a random sample from $N(\mu, \sigma^2)$ verify whether sample variance $s_n^2 = \frac{\sum_{i=1}^{n} (x_i \bar{x})^2}{n}$ is consistent estimator of σ^2 or not. (6)
 - b) Let X_1 and X_2 be two random variables with mean μ , and variance $\sigma^2 = 9$,

If $T = aX_1 + bX_2$ be an estimator of μ , then show that 'T' is an unbiased estimator of μ if, a + b = 1

12. a) Obtain MLE of θ when $X \sim f(x, \theta)$

(7)

$$f(x,\theta) = \begin{cases} \frac{\theta}{2} \ x \ \exp(-\theta x^2), & -\infty \le x < \infty, \\ \theta > 0, & otherwise \end{cases}$$

b) If
$$X \sim B(N, P)$$
, Show that $T = \frac{X(X-1)}{N(N-1)}$ is unbiased estimator of P^2 . (3)