ST.JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

MID-SEMESTER TEST – AUGUST 2016 M.Sc MATHEMATICS - I SEMESTER MT 7314 - TOPOLOGY - I

Time: $1\frac{1}{2}$ hrs

Max marks-35

Time: 1— ars	wax marks-35
Answer any SEVEN of the following questions	7 X 5 = 35
 i) Define a Topological space. ii) Give an example to show that the union of two topologies on X nee on X 	d not be a topology (3)
 In a topological space show that i) The arbitrary intersection of closed sets is closed. ii) Give an example of a nontrivial topology in which all the sets are b closed. 	·
3. Let (X, τ) be a topological space.	(2)
 i) Define a neighbourhood of a point. ii) If A and B are neighbourhoods of a point x then prove that A ∩ B 	(2) is also its
neighbourhood.	(3)
 4. Let A be a subset of a topological space (X, τ). i) Define limit point of A and the derived set of A ii) Prove that d(φ) = φ . (d(A) denotes the derived set of A.) iii) If A ⊂ B then d(A) ⊂ d(B). 	(1) (2) (2)
 5. Let A be a subset of a topological space (X, τ). i) Define interior of A ii) If A⁰ denotes the interior of A, prove that A is open if and only if 	$A^{o} = A (4)$
 Let (X, τ) be a topological space. Prove that a point x belongs to the closure of A if and only if every oper which contains x has a non empty intersection with A. 	en set G (5)
7. Prove that $\bar{A} = A^{\circ} \cup d(A)$	(5)
 8. Let (X, τ) be a topological space. i) Define boundary of a set. ii) If b(A) denotes the boundary of a set A then prove that b(A) = φ if and only if A is both open and closed. 	(2) (3)
9. Prove that $f: X \to Y$ is continuous iff inverses of open sets of Y are o	pen in X. (5)
10. Prove that $f: X \to Y$ is continuous iff $f(\overline{A}) \subset \overline{f(A)}$	(5)