

Registration Number:

Date & session:

ST. JOSEPH'S UNIVERSITY, BENGALURU -27 B.Sc. (MATHEMATICS) – I SEMESTER **SEMESTER EXAMINATION: OCTOBER 2022** (Examination conducted in December 2022) **MT 121 – MATHEMATICS I**

Time: 2 Hours Max Marks: 50 This paper contains 2 printed pages and 5 parts Ι. Answer any five of the following: (5X2=10)1. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 6 & 2 \\ 1 & 2 & 2 & 2 \end{bmatrix}$ 2. Find the eigen values of $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ 3. Evaluate $D^n(e^x \sinh x \cos x)$ 4. If $y = \tan^{-1}\left(\frac{1+x}{1-x}\right)$ then show that $(1+x^2)y_2 + 2xy_1 = 0$

5. Find the constant *c* of Rolle's theorem for the function $f(x) = x^2(1-x)^2$ in (0,1)

6. Evaluate
$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\log x} \right)$$

- 7. If $u = x^3 3xy^2 + x + e^x \cos y + 1$ show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
- 8. If $x = r\cos\theta$, $y = r\sin\theta$, z = z evaluate Jacobian of x, y, z with respect to r, θ , z.

П. Answer any two of the following:

- 9. Find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \end{bmatrix}$ by reducing to normal form.
- 10. Test the consistency and solve the system of equations. x + y + z = 6, 3x + y + z = 8, x - y + 2z = 8
- 9. State Cayley-Hamilton theorem. Find the inverse of the matrix $A = \begin{bmatrix} 1 & -2 \\ 5 & -4 \end{bmatrix}$ by using Cayley-Hamilton theorem.

MT 121 A 22

(2X5=10)

III. Answer any two of the following:

- 10. Find the nth derivative of (a) $\frac{x^2}{(x+1)^2(x+2)}$ (b) sin4xsinx (3+2)
- 11. Derive the nth derivative of $y = e^{ax} \sin(bx + c)$ hence evaluate the nth derivative of $y = e^x \sin^2 x$.
- 12. If $y = \sin(m \sin^{-1} x)$ then show that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 m^2)y_n = 0$

IV. Answer any two of the following:

(2X5=10)

(2X5=10)

- 13. State and prove Lagrange's mean value theorem.
- 14. Verify Cauchy's mean value theorem for the functions $\frac{1}{x^2}$ and $\frac{1}{x}$ in the interval (a, b).
- 15. Expand e^{sinx} using Maclaurin's theorem up to the term containing x^4 .

V. Answer any two of the following:

- 16. If u = f(r) and $x = r\cos\theta$, $y = r\sin\theta$ show that $\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$
- 17. State Euler's theorem for homogeneous functions and
 - If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x y}\right)$ then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$.
- 18. Expand $e^x siny$ in Taylor's series around the origin up to 4 terms.
- _____

2