Registration Number:

Date & session:

M.Sc (PHYSICS) – I SEMESTER SEMESTER EXAMINATION: OCTOBER 2022 (Examination conducted in December 2022) PH 7121 – CLASSICAL MECHANICS

Time: 2 Hours

This paper contains 3 printed pages and 2 parts

PART A

Answer any FIVE full questions.

- 1. For a one-particle system, the Kinetic Energy is defined as $T = \frac{1}{2}m\dot{x}^2$ where *m* is the
 - mass of the particle and x is its position.
 - i. Show that if the Kinetic Energy of the particle is due to an externally applied force F(x), then $T = \int F(x) dx$.
 - ii. A force that depends only on position of the particle is a conservative force and $F(x) = -\frac{dV}{dx}$ where *V* is the potential energy of the particle. From (i) above and

the force equation here, show that T + V = constant.

- iii. What is the significance of T+V= constant ? [2+3+2]
- 2. A system described by a set of generalized coordinates q_k undergoes a change dq_k due to translation.
 - (a) Show that the generalized force $Q_k = \sum_{i=1}^{N} \vec{F}_i \cdot \frac{\partial \vec{r}_i}{\partial q_k}$ is equal to the net force along the direction of translation.
 - (b) Show also that the generalized momentum p_k is equal to the net linear momentum along the direction of translation. [3+4]
- 3. A particle of reduced mass μ is moving in a central force described by an inverse square law: $F(r) = -\frac{k}{r^2}$, with k being a positive constant (attractive force).
 - (a) Obtain the expression for the "effective potential".
 - (b) If the total energy of the particle is equal to the effective potential, obtain the expression for the distance of closest approach to the potential. What is its implication? [5+2]

(5x7=35)

Max Marks: 50

- 4. If the Lagrangian explicitly depends on time, show that we can define an energy function $h(q, \dot{q}, t)$ such that $\frac{dh}{dt} + \frac{\partial L}{\partial t} = 0$. What is the implication for the energy function if the Lagrangian is not explicitly dependent on time?
- 5. Consider a system made up of N particles, constrained to positions described by vectors $\vec{r}_i(q_k)$, with q_k being the generalized coordinates corresponding to *n* degrees of freedom. If a rotation through dq_k is made about some arbitrary axis \hat{n} show that the direction of the generalized momentum is the same as that of the net angular momentum of the system.
- $\frac{\partial^2 y}{\partial y^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} \quad .$ 6. The waves on a string are represented by the wave equation: By

introducing the variables u=x-ct and v=x+ct and some algebra, we can obtain the d'Alembert solution to the wave equation by envisioning the wave as a right moving component f and a left moving component g of the disturbance so that the general solution would be : y(x,t) = f(x-ct) + g(x+ct). Using this solution for a **semi-infinite string**, obtain the two possibilities of reflection at a hard boundary at x=0.

7. For a rotating rigid body (with an angular velocity $\vec{\omega}$), it can be shown that any vector \vec{A} representing a point in its interior measured with respect to its center of mass (or origin of the

axis of rotation), transforms to inertial frame as: $\left(\frac{d\vec{A}}{dt}\right)_{inertial} = \left(\frac{d\vec{A}}{dt}\right)_{rot} + \vec{\omega} \times \vec{A}$, i.e. we

can conceive of a new operator $\left(\frac{d}{dt}\right)_{inertial} = \left(\frac{d}{dt}\right)_{rot} + \vec{\omega} \times$. Apply this operator on the

position vector \vec{r} to obtain the transformation rule for velocity \vec{v} (explain each term).

PART-B

Answer any THREE full questions

- m is sliding down a wire kept at an angle α with respect to the 8. A bead of mass horizontal. Show that the virtual work done on the bead by the constraint forces vanish.
- $J = \int^{b} \left(3x + \sqrt{\frac{\partial y}{\partial x}} \right) dx \quad .$ 9. Using the Euler equation find the extremum of the following functional:

PH 7121 A 22

<u>(3x5=15)</u>

10. The Lagrangian for the Simple Harmonic Oscillator is given as: $L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}m\omega^2x^2$

where x is the generalized coordinate and \dot{x} is the generalized velocity. Compute the Hamiltonian of this system.

11. The semi-major axis of Neptune's orbit around the Sun is $4.495 \times 10^{12}~m$. With the solar mass being: $1.99 \times 10^{30}~kg$ and the gravitation constant being: $6.674 \times 10^{-11}~m^3~kg^{-1}~s^{-2}$. Using Kepler's Third law compute the period of revolution of Neptune around the Sun in Earth Years.

12. A block is pulled on a frictionless table (Fig. 1). The motion is constrained to be along the horizontal direction (there is no motion along the vertical direction – see Fig. 1 to identify the vertical and horizontal directions). The applied force is given by the vector $\vec{F} = 4\hat{j} + 3\hat{k}$. Identify the constraint force and show that the virtual work due to the constraint force is equal to zero.