\\ \section*{\title{
ST. JOSEPH'S UNIVERSITY, BENGALURU -27\\ \section*{\title{
ST. JOSEPH'S UNIVERSITY, BENGALURU -27 \\ \\ \\ M.Sc Physics - I SEMESTER \\ \\ \\ M.Sc Physics - I SEMESTER SEMESTER EXAMINATION: OCTOBER 2022
}} SEMESTER EXAMINATION: OCTOBER 2022
}}
(Examination conducted in December 2022)
PH7221 - Mathematical Physics
Time: 2 Hours
Max Marks: 50
This paper contains TWO printed pages and TWO parts
PART-A

Answer any FIVE questions. Each question carries SEVEN Marks.

[5 x $7=35$]

1. Prove Cauchy's Theorem $\oint f(z) d z=0$. What are the conditions $f(z)$ should satisfy for this theorem to be valid?
2. With the correct reasons explain whether the Fourier Transforms of $a) \cdot \sin (x)$, b). $\delta(x)$ and $c) \cdot \sin \left(\frac{1}{x}\right)$ exist or not.
3. (a). Find the Fourier transform of a Gaussian function.
(b). What will be the nature of the Fourier Transform of a function that has an even real part and an odd imaginary part? What are such functions called as?
4. (a). Prove that $\lim _{z \rightarrow 0} \frac{\bar{z}}{z}$ does not exist.
(b). Obtain the Forward transform (Jacobian Matrix) in polar and cartesian form.
5. (a). Using Bessel's Function, show that

$$
\text { (i). } J_{1 / 2}(x)=\sqrt{\left(\frac{2}{\pi x}\right)} \sin x
$$

(b). With the help of Rodrigue's formula, find the Legendre polynomials for the given conditions,

$$
\begin{equation*}
\text { (i). } \int_{-1}^{+1} P_{0}(x) \cdot d x,(i i) \cdot \int_{-1}^{+1}\left\|P_{0}(x)\right\|^{2} \cdot d x \tag{3+4}
\end{equation*}
$$

6. Compute the solution of the two-dimensional Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ for the following cases (where k is separation constant) (i) $k=0$, (ii). $k>0$, (iii). $k<0$. [7]
7. (a). Obtain an expression for one dimensional(1D) wave equation.
(b). Demonstrate that the Hermite polynomials $H_{2}(x)$ and $H_{3}(x)$ are orthogonal.

PART-A

Answer any THREE questions. Each question carries FIVE Marks.
8. Find the residues of $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$.
9. Find the Fourier transform of the derivative of a top hat function.
10. Using the method of separation of variables, find the solution of the following equation,

$$
\begin{equation*}
\frac{\partial u}{\partial x}+u=\frac{\partial u}{\partial t} \text { if } u=4 e^{-3 x}, \text { when } t=0 . \tag{5}
\end{equation*}
$$

11. Using generating function, find the Legendre polynomials

$$
(i) \cdot P_{n}(1),(i i) \cdot P_{n}(-1),(i i i) \cdot P_{n}(-x)
$$

