

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU -27 B.Sc. PHYSICS V SEMESTER

SEMESTER EXAMINATION: OCTOBER 2022

(Examination conducted in December 2022)

PH 5118: ELECTRONICS AND RELATIVITY

Tim	e: 2 ½ Hours Max Mar This paper contains2 printed pages and3 parts	'ks: 70
PART – A		
An	swer any four of the following: [4	x10=40]
1.	a) With a neat circuit diagram explain the working of CE transistor amplifier.Draw the frequency response curve and define bandwidth.b) Distinguish between active, saturation and cut off regions of the transistor in C	CE mode. (7+3)
2.	 a) Discuss the construction and working of n – channel FET. b) What is meant by biasing of a transistor? Write the advantages of using volta divider bias. 	,
3.	a) With a circuit diagram describe how an OP-AMP functions as a subtractor.b) Distinguish between positive and negative feedback. State the Barkhausen criterion for sustained oscillations.	(6+4)
4.	a) Explain the working of Phase shift oscillator with a circuit diagram.b) Discuss the construction and working of OR and AND gate using diodes. Verify it with a truth table.	(5+5)
5.	a) Deduce Galilean transformation equations. Hence discuss Galilean Principle relativity.b) Prove velocity addition theorem and explain its significance.	of (5+5)
6.	 a) State the postulates of special theory of relativity. b) Derive mass energy relation E = mc² 	(2+8)
PART-B		
Ar	nswer any four of the following:	[4x5=20]
7.	Draw the DC load line and determine the operating point of a silicon transistor in base bias circuit. Given V_{CC} = 25 V, V_{BB} = 15 V, R_C = 5 k Ω , R_B = 2 M Ω and β =12	
8.	The parameters for FET are: Maximum drain current $I_{DSS} = 15$ mA, Pinch off volt $V_P = -3V$. Calculate the drain current for a) $V_{GS} = 0V$ b) $V_{GS} = -1V$ c) $V_{GS} = -3V$	

9. The input to the differentiator circuit is a sinusoidal voltage of peak value 5mV and

frequency 1KHz. Find the output voltage if $R_f = 100 \text{ K}\Omega$, $C = 1\mu\text{F}$

- 10. The frequency of the Hartley oscillator is 20 kHz. The capacitor used in the feedback network has a value of 576 pF. If one of the inductor values is 100 mH, calculate the value of the other inductor. Also calculate the amplifier gain.
- 11. At what speed should a clock be moved so that it may appear to lose one minute in each hour?
- 12. A particle of rest mass m_0 moves with a speed 0.6c. Calculate its mass, momentum total energy and kinetic energy.

PART-C

Answer any **five** of the following.

[5x2=10]

- 13. a) A bipolar junction transistor is a current controlled device. Explain
 - b) A common collector amplifier is called an emitter follower. Justify.
 - c) What is the significance of virtual ground in an OP-AMP?
 - d) Can we realize an AND gate from a NOR gate? Discuss.
 - e) A sphere moving parallel to its diameter with a velocity appears elliptical. Explain.
 - f) What is the significance of the negative result of Michelson Morley experiment?