SEMESTER EXAMINATION: OCTOBER 2022

(Examination conducted in December 2022)
PH 5218 : QUANTUM MECHANICS, ATOMIC AND MOLECULAR PHYSICS

Time: $21 ⁄ 2$ Hours
 Max Marks: 70

This paper contains 2 printed pages and 3 parts

PART-A

Answer any FOUR questions:
[4X10=40]

1. a) With a neat diagram, describe Davisson and Germer's experiment. How did the result support the de-Broglie hypothesis?
b) Give Born's interpretation of the wave function.
2. a) What is wave-particle duality? Arrive at an expression for de-Broglie wavelength in terms of momentum, energy and temperature.
b) Explain the failure of classical physics to explain the experimental facts on photoelectric effect.
3. a) Obtain Schrodinger's time dependent wave equation for a moving particle.
b) Write a note on expectation value.
4. a) Set up the Schrodinger's equation for a free particle trapped in a one dimensional infinite potential well. Solve it to obtain the eigen values of energy.
b) Write the equation of continuity in quantum mechanics and give its significance.
5. With necessary theory, describe Stern-Gerlach experiment and mention its importance.
6. a) Obtain an expression for the rotational energy levels of diatomic molecule and shows that the spectral lines equally spaced.
b) Mention the applications of the Raman effect.

PART-B

Answer any FOUR questions:
$[4 X 5=20]$
Planck's Constant $=6.626 \times 10^{-34} \mathrm{Js}$. Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$, charge of electron $=1.6 \times 10^{-19} \mathrm{C}$
7. A golf ball has a mass of 75 g and a speed of $56 \mathrm{~m} / \mathrm{s}$. Find the de-Broglie wavelength. If the speed can be measured with a precision of 1.5% with, what precision can one simultaneously measure its position?
8. Evaluate (i) the commutation value of $\left[x, \frac{\partial}{\partial x}\right]$ and $\left[\frac{\partial}{\partial x}, x\right]$ (ii) If $\Psi(x)=\sin 2 x$, find the eigen value of the operator $\frac{d^{2}}{d x^{2}}$.
9. The energy of a linear harmonic oscillator in its $3^{\text {rd }}$ excited state is 1 eV . Calculate frequency of the oscillator. Also find out zero-point energy in joules and in eV of the oscillator.
10. Find the probability that a particle can be found between $x=0.25$ and 0.55 when the particle is limited to the x-axis and has a wave function

$$
\psi=\begin{array}{cl}
\text { a } x & \text { for } 0 \leq x \leq 1 \\
0 & \text { for } x<0 \text { and } x>1
\end{array}
$$

11. For an electron in an atom if the orbital quantum number is 3 then find the possible values of orientations of the orbital angular momentum with respect to an external magnetic field.
12. A substance shows Raman line at $4567 \AA$ A when exciting line $4358 \AA$ is used. Deduce the positions of stokes line for the same substance when the exciting line $4047 \AA$ is used.

PART-C

13. Answer any FOUR questions with proper justification.

$$
[4 \mathrm{X} 2=10]
$$

a) Is the colour of the spectral line emitted due to transition in a one-dimensional box related to its size? Explain.
b) Why does normal Zeeman effect occur only in atoms with an even number of electrons?
c) A beam of short wavelength gives accurately the position of a particle. Explain.
d) Can the wave function ψ be equal to a tan function?
e) Among electron and neutron which one should be heated more so that they have the same de Broglie wavelength?
f) Is the state ${ }^{2} P_{1 / 2}$ allowed? Justify.

