ST 7221_A_22

ST.JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc. (STATISTICS) – I SEMESTER SEMESTER EXAMINATION: OCTOBER 2022 (Examination conducted in December 2022) ST 7221 – THEORY OF POINT ESTIMATION

Time: 2 Hours

This paper contains ONE printed page and ONE part.

PART-A

Answer any FIVE questions.

1. A).Define Location-scale family and Pitman family of distributions. Check whether $U(0, 5\theta)$ belongs to Pitman family or not. (5) B).Define single parameter exponential family. Check whether Negative Binomial distribution with parameter θ belongs to single parameter exponential family. (5) 2. A). Show that convex combination of two unbiased estimators is unbiased. (3) B).Prove that sample mean is always a consistent estimator of population mean 'µ' provided the population has got finite variance. (4) C).Let X_1 and X_2 are observations from Poisson distribution with parameter ' λ '. Verify whether $X_1 + 2X_2$ is sufficient or not. (3)3. A) Describe consistency with its sufficient conditions. (2) B) The density of uniform distribution is given by $f(x) = \frac{1}{a}$, $0 < x < \theta$. If $Y = X_{(n)}$ is sufficient statistic for parameter θ then verify whether it is complete statistic? (5) C) Obtain the moment estimator of parameter p when X follows Negative Binomial distribution with parameter 'r' and 'p'. (3) 4. A) State and prove Neyman Factorization theorem. (6) B) Find the minimal sufficient statistic for (μ, σ^2) when the random sample is drawn from Normal distribution with parameters μ and σ^2 . (4) 5. A State and prove Rao-Blackwell theorem. (6) B) Define minimum variance bound estimator. Obtain lower bound for binomial distribution and give your comment. (4)6. A) State and prove Cramer-Rao inequality. (6)B) Find the Fisher information function contained in a random sample of size n for the distribution with probability density function $f(x, \theta) = \frac{\theta}{x^{\theta+1}}, x > 1, \theta > 0.$ (4) 7. A) Define UMVUE. Construct UMVUE for p^2 when the sample is drawn from B(1,p)distribution. (6) B) Define maximum likelihood estimator (MLE). Obtain the MLE of Geometric distribution with parameter 'p'. (4) **************

Date & session:

 $10 \times 5 = 50$

Max Marks: 50