ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU -27
M.Sc. MATHEMATICS - IV SEMESTER

SEMESTER EXAMINATION: APRIL 2023
(Examination conducted in May 2023)
MT0422: FINITE ELEMENT METHODS
(For current year students only)

Time: $21 / 2$ Hours
This paper contains THREE printed pages.
Answer any SEVEN full questions of the following:

1. What is Finite element method? Write any five advantages, disadvantages and limitations of the method?
2. Given a differential equation $\frac{d^{2} u}{d x^{2}}-u+x=0,0 \leq x \leq 1$ with boundary conditions $u(0)=0, u(1)=0$, the corresponding functional to be extrimized is
$I=\frac{1}{2} \int_{0}^{1}\left[\left(\frac{d u}{d x}\right)^{2}-2 x u+u^{2}\right] d x$. Find the solution to the differential equation using
Rayleigh Ritz's method.
[10M]
3. Given a differential equation $\frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}-6 y=0,0 \leq x \leq 1$ with boundary conditions $y(0)=1, y^{\prime}(1)=0.1$. Find $y(0.2)$ by using Galerkin's method.
4. Derive the governing differential equation for one dimensional heat conduction in steady state.
5. A steel bar of 800 mm is subjected to the axial load of 3 KN as shown in figure. Find the elongation of the bar by discretizing into two elements.
Data: $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, A=300 \mathrm{~mm}^{2}$.

6. Find the temperature distribution in the 1-D fin shown in figure. Take two elements for idealization.

Data: Specified Temperature $T_{1}=140^{\circ} \mathrm{C}$, length $l=5 \mathrm{~cm} \Rightarrow l_{1}=2.5 \mathrm{~cm}, l_{2}=2.5 \mathrm{~cm}$.
Assume that the convection takes place throughout the surface and the surrounding temperature is $T_{\alpha}=40^{\circ} \mathrm{C}$. Thermal conductivity $k=70 \mathrm{~W} / \mathrm{cm} \mathrm{K}$, convection heat transfer coefficient $h=5 W / \mathrm{cm}^{2} K$, area $A=3.14 \mathrm{~cm}^{2}$, perimeter $p=6.28 \mathrm{~cm}$. [10M]
7. For the brick wall shown in figure, the inside temperature is $28^{\circ} \mathrm{C}$ and outside of the wall is exposed to cold air at $-15^{\circ} \mathrm{C}$. Determine the nodal temperature distribution in a steady state, by considering two 1 - dimensional heat flow elements.
Data: $l=0.3 m \Rightarrow l_{1}=0.15 m, l_{2}=0.15 m, k_{1}=k_{2}=0.7 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, h=40 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}, A=1 \mathrm{~m}^{2}$

8. Evaluate the shape functions N_{1}, N_{2} and N_{3} the interior point p for the rectangular element.

9. For the plane stress element shown in figure, evaluate the stiffness matrix. Assume the modulus of elasticity $E=210 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$, Poisson's ratio $\mu=0.25$ and element thickness $t=10 \mathrm{~mm}$. The coordinates are given in millimeters.

[10M]

(OR)

Compute the element matrices and force vectors for the element shown in figure, when the edges 2-3 and 3-1 experience convection heat loss.

