Registration Number:

Date & session:

ST.JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc. (STATISTICS) – II SEMESTER SEMESTER EXAMINATION: APRIL 2023 (Examination conducted in May 2023) ST 8221 – TESTING OF HYPOTHESIS AND INTERVAL ESTIMATION

Time: 2 Hours

Max Marks: 50

This paper contains TWO printed pages and ONE part

PART-A

Answer any FIVE of the following

- 1. A) State and prove Neyman Pearson Lemma.
 - B) Derive a Most powerful test procedure for testing H₀: $p = p_0$ against H₁: $p = p_1$
 - $(p_1 > p_0)$ when X follows Geometric distribution with parameter 'p'.

(5+5)

- 2. A) Define the following terms:
 - i. Power of the test
 - ii. Randomized and Non-randomized test function
 - iii. p-value of a test
 - B) Define MLR Property. Derive an UMP test in Pitman family when only upper or lower end points depends on a parameter. (3+7)
- 3. A) Explain the concept of Non-existence of UMP test for testing simple null hypothesis against two sided alternatives in one parameter exponential family.

B) State and prove the asymptotic property of Likelihood Ratio Test.

(6+4)

4. A) Write a short note on Bartlett's test for homogeneity of variances.
B) Derive a LRT procedure for testing H₀: μ = μ₀ against H₁: μ ≠ μ₀ when X follows Normal distribution with mean μ and variance σ², where μ and σ² are unknown.

(4+6)

5. A) Define SPRT. State and prove Wald's Sequential Identity.B) Explain the concept of Pearson's Chi-square test for Goodness of fit test with the necessary assumptions.

(5+5)

ST 8221_A_23

6. A) Write a short note on Rao's score test.

B) Define the following terms in Interval estimation:

- i. Confidence sets
- ii. Pivotal quantity method
- iii. UMA confidence interval

C) Write a short note on evaluating interval estimators using size and coverage probability. (2+4+4)

7. A) Let $X_1, X_2, ..., X_n$ be a random sample from Uniform distribution over $(0, \theta)$. Find the shortest expected length confidence interval for θ .

B) Let $X_1, X_2, ..., X_n$ be a random sample from shifted exponential distribution with parameter θ . Obtain 100*(1 – α)% Uniformly Most Accurate lower bound for θ .

(5+5)

ST 8221_A_23