

Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE -560 027

M.Sc. STATISTICS – IV SEMESTER

SEMESTER EXAMINATION - May 2023

ST 0120: Advanced Statistical Inference

Time: 2 ¹/₂ hrs

Max: 70 Marks

6x 3= 18

This question paper has **TWO** printed pages and **TWO** sections

SECTION – A

I Answer any <u>SIX of the following:</u>

- 1. Define consistent estimator. State and prove invariance property of consistent estimator.
- 2. If $X_1, X_2, ..., X_n \sim Poisson(\theta)$, then show that if \overline{X} is Consistent asymptotically Normal (CAN) for θ then $\psi(\overline{X})$ is CAN for $e^{-\theta}$.
- 3. Write note on Resampling methods. Explain any two applications of resampling methods.
- 4. Define Sequential Probability Ratio Test (SPRT) and stopping time.
- 5. Obtain approximations to stopping bounds in SPRT.
- 6. Explain the procedure of constructing SPRT to test for mean when samples are from normal distribution.
- 7. Define U-Statistics. State two sample U-statistics theorem.
- Find the distribution of D₂, the one sample Kolmogorov-Smirnov statistic based on 2 observations.

SECTION – B

II Answer any <u>FOUR</u> of the following:

4 x 13 = 52

- 9. A) Define CAN and Best asymptotically Normal (BAN) estimators. Give example consistent but not CAN.
 - B) State and prove invariance property of CAN estimators. (6+7)
- 10. A) If X₁, X₂, ..., X_n be a random sample from N(0, σ²), obtain CAN estimator of σ².
 B) Define asymptotic relative efficiency (ARE) of estimators. Obtain efficiency of mle of *p* when X₁, X₂, ..., X_n~Bernoulli(*p*). (7+6)

- 11. A) Define Huber estimator. Obtain its limiting distribution when $X_1, X_2, ..., X_n \sim f(x, \theta)$, where f is symmetric about θ .
 - B) State and Prove Wald's Identity.
 - C) Define OC and ASN curve. Mention one application of each. (5+5+3)
- 12. A) Obtain SPRT test for testing the parameter μ , if the samples are drawn from $N(\mu, 1)$.
 - B) Obtain stopping time bounds for SPRT with an illustration. (7+6)
- 13. A) Derive the asymptotic variance of a U-statistics in one-sample problem.
 - B) Define Wilcoxon signed rank test for one-sample problem. Derive null distribution of Wilcoxon signed rank test for one-sample problem under the null hypothesis for testing location parameter. (6+7)
- 14. A) Define Kolmogorov-Simrnov test for one-sample problem and derive its distribution under the null hypothesis.
 - B) Describe Seigel-Tukey test for scale problem. Obtain the null distribution of the Statistic. (7+6)