

	Re	gist	er	Ν	um	١b	ei	1
--	----	------	----	---	----	----	----	---

Date:

ST JOSEPH'S UNIVERSITY, BENGALURU-27 B.Sc (MATHEMATICS) - III Semester SEMESTER EXAMINATION: OCTOBER 2023

(Examination conducted in November/December 2023)
MTOE 8 -MATHEMATICS FOR PHYSICAL SCIENCES-III

(For current batch students only)

Duration: 2 Hours Max. Marks: 60

This paper contains TWO pages and THREE parts.

PART A

Answer any SIX of the following.

 $(6 \times 2 = 12)$

1. Solve
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 0$$
.

2. Solve
$$\frac{d^2y}{dx^2} + 4y = 0$$
.

- 3. Check if the given differential equation is exact, $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$.
- 4. Find the reciprocal of z = 2 3i.
- 5. Define an analytic function and an entire function.
- 6. Find the real and imaginary parts of e^{x+iy} .
- 7. Find the gradient of $log(x^2 + y^2 + z^2)$.
- 8. Prove that the vector point function $\vec{F}(x,y,z) = z \hat{i} + x \hat{j} + y \hat{k}$ is solenoidal.

PART B

Answer any THREE of the following.

 $(3 \times 6 = 18)$

9. Solve
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 5\cos 3x$$
.

10. Solve
$$\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - y = (x+1)e^x$$
.

- 11. Solve the simultaneous differential equations, $\frac{dx}{dt} + 2y = \sin 2t$; $\frac{dy}{dt} 2x = \cos 2t$.
- 12. Solve the Cauchy Euler differential equation $x^2 \frac{d^2y}{dx^2} + 5x \frac{dy}{dx} + 13y = x^2$.
- 13. Solve by method of variation of parameters, $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = e^{2x}$.

PART C

Answer any <u>FIVE</u> of the following.

 $(5 \times 6 = 30)$

14. Check if the following functions are analytic.

(i)
$$2xy + i(y^2 - x^2)$$

(ii)
$$2x^2y + i(y^2 - x)$$
 (3+3)

- 15. Check if the C-R equations are satisfied for the function $(r + \frac{1}{r})\cos\theta + i(r \frac{1}{r})\sin\theta$.
- 16. Show that the real and imaginary parts of the function $f(z) = z^3$ are harmonic.
- 17. Find the analytic function f(z) = u + iv using Milne Thomson method, where $u = x^3 3xy^2 + 3x^2 3y^2 + 1$.
- 18. Find the gradient of the scalar point function $\phi(x,y,z) = 3x^2 + 2y^3 5z$. Also find the directional derivative of ϕ at (1,2,-1) in the direction of $\hat{i} \hat{j} + 2\hat{k}$.
- 19. (i) If $\vec{F} = (x+3y)\hat{i} + (y-2z)\hat{j} + (x+\lambda z)\hat{k}$ is solenoidal, find the value of λ .
 - (ii) Prove that the vector point function $\vec{F}(x,y,z) = (6xy + z^3) \hat{i} + (3x^2 z) \hat{j} + (3xz^2 y) \hat{k}$ is irrotational. (3+3)
- 20. Find the divergence and curl of $\vec{F}(x, y, z) = 2x^2y \hat{i} + 3x \hat{j} + 4zx \hat{k}$.