

Register number:
Date and session:

ST. JOSEPH'S UNIVERSITY, BENGALURU-27
M.Sc (MATHEMATICS) - III SEMESTER

SEMESTER EXAMINATION: OCTOBER, 2023
(Examination conducted in November/December 2023)
MTDE 9322: GRAPHS AND MATRICES
(For current batch students only)
Duration: 2 Hours
Max. Marks: 50

1. The paper contains TWO printed pages and ONE part.
2. Attempt any FIVE FULL questions.
3. Calculators are allowed.
4. Throughout the paper I is the identity matrix of appropriate order, J is the all ones matrix of appropriate order.
5. (a) Show that the eigenvalues of the adjacency matrix of $K_{p, q}$ are $-\sqrt{p q}$ and $\sqrt{p q}$ with multiplicity 1 and 0 with multiplicity $p+q-2$.
(b) Let the adjacency matrix of a simple graph G on n vertices be $A(G)$. Prove that the adjacency matrix of its complement is $A(\bar{G})=J_{n}-I_{n}-A(G)$
6. (a) Let G be a graph with n vertices. Let λ_{1} be the largest eigenvalue of $A(G), \delta$ be the smallest vertex degree in G, and Δ be the largest vertex degree in G. Show that $\delta \leq \lambda_{1} \leq \Delta$.
(b) Let G be a connected r-regular graph. Prove that r is an eigenvalue of $A(G)$. [4]
7. (a) Let G be the graph drawn below and let Q be its incidence matrix. Show that $Q+Q^{T}$ is positive semi-definite.

(b) Let G be a connected graph with n vertices and let M be its incidence matrix. Prove that rank of M is $n-1$ if G is bipartite and n, otherwise.
(c) Let G be a graph with vertex set $\{1,2, \cdots, n\}$. Let λ_{1} be the largest eigenvalue of the Laplacian matrix L. Show that

$$
\begin{equation*}
\lambda_{1} \leq \max \left\{d_{i}+d_{j}-c(i, j): 1 \leq i<j \leq n, i \sim j\right\} \tag{7}
\end{equation*}
$$

where $c(i, j)$ is the number of vertices that are adjacent to both i and j.
(d) Compute the eigenvalues of $L\left(C_{n}\right)$, (the Laplacian matrix of cycle graph C_{n}), where $n \geq 2$.
4. Let T be a tree with $V(T)=\{1,2, \cdots, n\}$, Laplacian matrix L and algebraic connectivity μ. Let x be a Fiedler vector and n be a characteristic vertex. Let $T_{1}, T_{2}, \cdots, T_{k}$ be the components of $T \backslash\{n\}$. Show that for any $j=1,2, \cdots, k$, the vertices of $V\left(T_{j}\right)$ are either all positive, all negative or zero.
5. Let T be a tree. Show that a vertex is a characteristic vertex with respect to a Fiedler vector x if and only if it is characteristic with respect to a Fiedler vector y.
6. (a) Let T be a tree with n vertices. Let D be the distance matrix of T, L the Laplacian matrix and $\tau=\left[2-d_{1}, 2-d_{2}, \cdots, 2-d_{n}\right]^{T}$ where d_{i} is the degree of vertex i. Show that $L D+2 I=\tau \mathbf{1}^{T}$.
(b) Compute the distance matrix of P_{5}. Can the eigenvalues of the distance matrix of any graph be complex? Justify.
7. (a) Let G be a connected graph with n vertices and $f: E(G) \rightarrow \mathbb{R}$ be a unit flow between the vertices i and j. Prove that the resistance distance between i and j is the minimum of $\|f\|^{2}$.
(b) Compute the resistance matrix of bipartite graph $K_{1,3}$.

