Register number:

ST. JOSEPH'S UNIVERSITY, BENGALURU-27 M.Sc (MATHEMATICS) - III SEMESTER SEMESTER EXAMINATION: OCTOBER, 2023 (Examination conducted in November/December 2023) MTDE 9322: GRAPHS AND MATRICES

(For current batch students only)

Duration: 2 Hours

Max. Marks: 50

- 1. The paper contains **TWO** printed pages and **ONE** part.
- 2. Attempt any **FIVE FULL** questions.
- 3. Calculators are allowed.

4. Throughout the paper I is the identity matrix of appropriate order, J is the all ones matrix of appropriate order.

- 1. (a) Show that the eigenvalues of the adjacency matrix of $K_{p,q}$ are $-\sqrt{pq}$ and \sqrt{pq} with multiplicity 1 and 0 with multiplicity p + q 2. [6]
 - (b) Let the adjacency matrix of a simple graph G on n vertices be A(G). Prove that the adjacency matrix of its complement is $A(\bar{G}) = J_n - I_n - A(G)$ [4]
- 2. (a) Let G be a graph with n vertices. Let λ_1 be the largest eigenvalue of A(G), δ be the smallest vertex degree in G, and Δ be the largest vertex degree in G. Show that $\delta \leq \lambda_1 \leq \Delta$. [6]
 - (b) Let G be a connected r-regular graph. Prove that r is an eigenvalue of A(G). [4]
- 3. (a) Let G be the graph drawn below and let Q be its incidence matrix. Show that $Q + Q^T$ is positive semi-definite. [4]

(b) Let G be a connected graph with n vertices and let M be its incidence matrix. Prove that rank of M is n - 1 if G is bipartite and n, otherwise. [6] (c) Let G be a graph with vertex set $\{1, 2, \dots, n\}$. Let λ_1 be the largest eigenvalue of the Laplacian matrix L. Show that

$$\lambda_1 \le \max\{d_i + d_j - c(i, j) : 1 \le i < j \le n, \ i \sim j\}$$

where c(i, j) is the number of vertices that are adjacent to both *i* and *j*. [7]

- (d) Compute the eigenvalues of $L(C_n)$, (the Laplacian matrix of cycle graph C_n), where $n \ge 2$. [3]
- 4. Let T be a tree with $V(T) = \{1, 2, \dots, n\}$, Laplacian matrix L and algebraic connectivity μ . Let x be a Fiedler vector and n be a characteristic vertex. Let T_1, T_2, \dots, T_k be the components of $T \setminus \{n\}$. Show that for any $j = 1, 2, \dots, k$, the vertices of $V(T_j)$ are either all positive, all negative or zero. [10]
- 5. Let T be a tree. Show that a vertex is a characteristic vertex with respect to a Fiedler vector x if and only if it is characteristic with respect to a Fiedler vector y. [10]
- 6. (a) Let T be a tree with n vertices. Let D be the distance matrix of T, L the Laplacian matrix and $\tau = [2 d_1, 2 d_2, \cdots, 2 d_n]^T$ where d_i is the degree of vertex i. Show that $LD + 2I = \tau \mathbf{1}^T$. [6]
 - (b) Compute the distance matrix of P_5 . Can the eigenvalues of the distance matrix of any graph be complex? Justify. [4]
- 7. (a) Let G be a connected graph with n vertices and $f : E(G) \to \mathbb{R}$ be a unit flow between the vertices i and j. Prove that the resistance distance between i and j is the minimum of $||f||^2$. [7]
 - (b) Compute the resistance matrix of bipartite graph $K_{1,3}$. [3]