

Register Number:

Date and session:

ST JOSEPH'S UNIVERSITY, BENGALURU - 27 M.Sc (MATHEMATICS) - 2nd SEMESTER SEMESTER EXAMINATION: APRIL 2024

(Examination conducted in May/June 2024)

MT 8321 - COMPLEX ANALYSIS

(For current batch students only)

Duration: 2 Hours Max Marks: 50

- 1. The paper contains **TWO** printed pages and **ONE** part.
- 2. Answer any **FIVE FULL** questions.
- a) State and prove Cauchy's integral formula.
 - b) Find the maximum modulus of f(z) = 2z + 5i on the closed circular region defined by [6+4] $|z| \leq 2$.
- 2. a) State and prove Taylor's theorem.
 - b) Prove Maximum modulus theorem.

[6+4]

3. a) Expand
$$f(z) = \frac{5}{z^2 + z - 6}$$
 in a Laurent's series valid for $2 < |z| < 3$. [5+5]

(i).
$$f(z) = \frac{1 - \cos z}{z^3}$$
 at $z = 0$.

b) Find and classify the singularities of the functions (i).
$$f(z)=\frac{1-\cos z}{z^3}$$
 at $z=0$. (ii). $f(z)=\frac{z}{1-\sin z}$ at $z=0$.

OR

- a) Use Residue theorem to evaluate $\int_C \frac{(z^2+1)dz}{(z-1)(z-2)^2(z+5)}$ where C is the circle with |z| = 4.
- b) Use Residue theorem to evaluate $\int_0^{2\pi} \frac{d\theta}{(2+\cos\theta)}$.

[5+5]

4. a) Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}.$

b) Evaluate
$$\int_0^\infty \frac{\cos x \, dx}{(x^2+1)}$$
. [5+5]

- 5. a) Define holomorphic function with an example.
 - b) Suppose f is analytic at z_0 and $f'(z_0) \neq 0$, prove that f is conformal and locally 1-1 at z_0 .

[2+8]

- 6. a) Define Zero of an analytic function.
 - b) State and prove Rouche's theorem.

[2+8]

- 7. a) If S is a circle or line, and $f(\frac{1}{z})$ then prove that f(S) is also a circle or a line.
 - b) Define Meromorphic function with an example.

[7+3]
