

ST.JOSEPH'S UNIVERSITY, BENGALURU -27 B.Sc. (MATHEMATICS) – II SEMESTER SEMESTER EXAMINATION: APRIL 2024 (Examination conducted in May/June 2024) MT 221 – MATHEMATICS- II (For current students only)

Reg. Number:	
Date & session:	

Time: 2 Hours Max Marks: 60

This paper contains 1 printed page and 3 parts

PART A

Answer any Six of the following:

(6X2=12)

- 1. Show that the inverse of an element in a group is unique.
- 2. On the set of positive rational numbers Q^+ , the binary operation * is defined by $a*b=\frac{ab}{2}$. Find the identity element and inverse of 4.
- 3. Find the area bounded between the cissoid $y^2(a-x) = x^3, a > 0$ and its asymptote.
- 4. Find the slope of the tangent to the curve $r=a \sin 2\theta$ at the point $\theta=\frac{\pi}{4}$.
- 5. Show that the curves $r = ae^{\theta}$ and $re^{\theta} = b$ intersect orthogonally.
- 6. Find the envelopes of the family of circles, whose centre lies on the x-axis.
- 7. Solve $x \frac{dy}{dx} 2y = 2x$.
- 8. Find the singular solution of $y = px + \frac{a}{p}$.

PART B

Answer any three of the following:

(3X6=18)

- 9. Show that $G = \{2,4,6,8\}$ forms an abelian group under \times_{10} by using Cayley's table.
- 10. If a is a generator of a cyclic group G then show that O(a) = O(G).

11. Evaluate (i)
$$\int_0^{2a} x^2 \sqrt{2ax - x^2} \ dx$$
 (ii) $\int_0^{\infty} \frac{x^4}{(1+x^2)^4} dx$. (4+2)

12. Find the surface area of the solid obtained by revolving the cardioid $r = a(1 + cos\theta)$ about the initial line.

PART C

Answer any five of the following:

(5X6=30)

- 13. Derive the formula for the derivative of arc length for the cartesian equations.
- 14. Show that the pedal equation of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is $r^2 = a^2 3p^2$.
- 15. Find all the asymptotes of the curve $2x^3 x^2y 2xy^2 4x^2 + 8xy 4x + 1 = 0$.
- 16. (a) Derive the formula for the radius of curvature of cartesian curves.

(b) Solve
$$\left[y\left(1+\frac{1}{x}\right)+\cos y\right]dx+\left[x+\log x-x\sin y\right]dy=0.$$
 (3+3)

- 17. Find the suitable integrating factor and solve y(8x 9y)dx + 2x(x 3y)dy = 0.
- 18. Reduce the equation $(x^2 1)p^2 2xyp + y^2 1 = 0$ into Clairaut's form and find the general solution.
- 19. Show that the family of parabolas $y^2 = 4a(x + a)$ is self-orthogonal.
