| Registration | Number | |--------------|--------| |--------------|--------| Date & Session: # ST JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc. Physics – 4th SEMESTER SEMESTER EXAMINATION: APRIL 2024 (Examination conducted in May / June 2024) PH0120 - Solid state Physics (For current batch students only) Time: 2 Hours Max Marks: 50 #### This paper contains THREE printed pages and TWO parts #### **PART-A** ### Answer any FIVE questions. Each question carries SEVEN Marks. $[5 \times 7 = 35]$ - 1. (a). Obtain an expression for the interplanar spacing for planes of the (h k l) type in the case of cubic structure. - (b). Construct first two Brillouin Zones encompassing the given lattice points within a 2D lattice structure. - (c). Given that \vec{k} represents the wavevector of incident light $(|\vec{k}| = \frac{2\pi}{\lambda})$, where λ is the wavelength of light) \vec{G} is a reciprocal lattice vector, express Bragg's law as $2\vec{k} \cdot \vec{G} + \vec{G}^2 = 0$. Determine the boundary values that define the boundaries of the first and second Brillouin zones. - 2. Using the Kronig-Penney model, explain the electron in a one-dimensional periodic potential. How does it lead to formation of energy bands in solids? - 3. (a). Explain the single-particle tunneling effect for Superconductor-Insulator-Superconductor (SIS) system Using current-voltage (I-V) curve. - (b). Demonstrate mathematically the perfect diamagnetic properties exhibited by superconductors. [4+3] - 4. Describe the Wiess molecular field theory of ferromagnetism and obtain the Cuire-Weiss law. - 5. Find the expression relating the macroscopic dielectric constant with microscopic polarizabilities by driving the Classius-Mosotti relation. - 6. In a linear chain, the lattice dynamics of a diatomic chain with masses M and m (where M>m) are arranged alternately by springs with a force constant K at a nearest neighbor distance of a. The dispersion relation connecting ω and k for a one-dimensional diatomic lattice with nearest neighbor interactions is expressed as $$\omega^{2} = K \left(\frac{1}{M} + \frac{1}{m} \right) \pm K \left[\left(\frac{1}{M} + \frac{1}{m} \right)^{2} - \frac{4\sin^{2}qa}{Mm} \right]^{\frac{1}{2}}$$ - (i). Obtain frequency-wavevector relation for both acoustics and optical modes. - (ii). Plot the dispersion curve, ω versus q for one dimensional diatomic lattice (M > m) in reduced zone scheme. Show that the both acoustic and optical branches in dispersion curve meet the zone boundary normally. [5+2] - 7. (a). How does the paramagnetic susceptibility of a substance vary with temperature? - (b). Describe the spontaneous polarization of Barium Titanate crystal. - (c). Explain the critical magnetic field in a superconductor. How does the critical magnetic field vary with temperature in Type I and Type II superconductor? [2+3+2] ### **PART-B** ### Answer any THREE questions. Each question carries FIVE Marks. $[3 \times 5 = 15]$ - 8. Find the total polarizability of CO₂, if its susceptibility is 0.985 x 10⁻³. Density of carbon dioxide is 1.977 kg/m³. - 9. A paramagnetic substance contains 10²⁸ ions/m³ with magnetic moment of one Bohr magnetron. Calculate the paramagnetic susceptibility and the magnetization produced in a uniform magnetic field of 10⁶ A/m, at room temperature. - 10. A superconductor has a critical temperature of 7.26 K at zero magnetic field and a critical field of 8 x 10⁵ A/m at 0K. Find the critical field at 5K. - 11. (a). The distance between consecutive (1 1 1) planes in a cubic crystal is 2 Å. Determine the lattice constant. - (b). The Debye temperature of diamond is 2400K. Determine the highest possible vibrational frequency at 5K. - (c). The hall coefficient of a certain silicon specimen was found to be $-7.35 \times 10^{-5} m^3 C^{-1}$ from 100 to 400 K and the electrical conductivity was found to be 200 $\Omega^{-1} m^{-1}$. Calculate the density and mobility of charges carriers. [1.5+1.5+2] # **List of Physics Constants** | Speed of light in vacuum (c) | 2.997925 x 10 ⁸ ms ⁻¹ | |--|--| | Charge of electron (e) | 1.6021 x 10 ⁻¹⁹ C | | Rest mass of electron (m) | 9.109 x 10 ⁻³¹ kg | | Atomic mass unit (m _u) | 1.6604 x 10 ⁻²⁷ kg | | Electron radius (r _e) | 2.828 x 10 ⁻¹⁵ m | | 1 Angstrom unit (Å) | 10 ⁻¹⁰ m | | Avogadro's number (N _A) | 6.02252 x 10 ²⁶ kmol ⁻¹ | | Boltzmann constant (k _B) | 1.38054 x 10 ⁻²³ jK ⁻¹ | | Thermal energy at 300K (k _B T) | 0.0258 J | | Planck's constant (h) | 6.626 x 10 ⁻³⁴ Js | | Permeability of free space (μ ₀) | 4π x 10 ⁻⁷ Hm ⁻¹ | | Permittivity of free space (ε ₀) | 8.854 x 10 ⁻¹² Fm ⁻¹ | | Rydberg constant for Hydrogen (R _H) | 1.0967758 x 10 ⁷ m ⁻¹ | | Universal gas constant (Ru = N _A k _B) | 8.3143 x 10 ³ Jkmol ⁻¹ K |