Registration	Number
--------------	--------

Date & Session:

ST JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc. Physics – 4th SEMESTER SEMESTER EXAMINATION: APRIL 2024

(Examination conducted in May / June 2024)

PH0120 - Solid state Physics

(For current batch students only)

Time: 2 Hours Max Marks: 50

This paper contains THREE printed pages and TWO parts

PART-A

Answer any FIVE questions. Each question carries SEVEN Marks.

 $[5 \times 7 = 35]$

- 1. (a). Obtain an expression for the interplanar spacing for planes of the (h k l) type in the case of cubic structure.
 - (b). Construct first two Brillouin Zones encompassing the given lattice points within a 2D lattice structure.
 - (c). Given that \vec{k} represents the wavevector of incident light $(|\vec{k}| = \frac{2\pi}{\lambda})$, where λ is the wavelength of light) \vec{G} is a reciprocal lattice vector, express Bragg's law as $2\vec{k} \cdot \vec{G} + \vec{G}^2 = 0$. Determine the boundary values that define the boundaries of the first and second Brillouin zones.
- 2. Using the Kronig-Penney model, explain the electron in a one-dimensional periodic potential. How does it lead to formation of energy bands in solids?
- 3. (a). Explain the single-particle tunneling effect for Superconductor-Insulator-Superconductor (SIS) system Using current-voltage (I-V) curve.
 - (b). Demonstrate mathematically the perfect diamagnetic properties exhibited by superconductors. [4+3]
- 4. Describe the Wiess molecular field theory of ferromagnetism and obtain the Cuire-Weiss law.
- 5. Find the expression relating the macroscopic dielectric constant with microscopic polarizabilities by driving the Classius-Mosotti relation.
- 6. In a linear chain, the lattice dynamics of a diatomic chain with masses M and m (where M>m) are arranged alternately by springs with a force constant K at a nearest neighbor distance of a. The dispersion relation connecting ω and k for a one-dimensional diatomic lattice with nearest neighbor interactions is expressed as

$$\omega^{2} = K \left(\frac{1}{M} + \frac{1}{m} \right) \pm K \left[\left(\frac{1}{M} + \frac{1}{m} \right)^{2} - \frac{4\sin^{2}qa}{Mm} \right]^{\frac{1}{2}}$$

- (i). Obtain frequency-wavevector relation for both acoustics and optical modes.
- (ii). Plot the dispersion curve, ω versus q for one dimensional diatomic lattice (M > m) in reduced zone scheme. Show that the both acoustic and optical branches in dispersion curve meet the zone boundary normally. [5+2]
- 7. (a). How does the paramagnetic susceptibility of a substance vary with temperature?
 - (b). Describe the spontaneous polarization of Barium Titanate crystal.
 - (c). Explain the critical magnetic field in a superconductor. How does the critical magnetic field vary with temperature in Type I and Type II superconductor? [2+3+2]

PART-B

Answer any THREE questions. Each question carries FIVE Marks.

 $[3 \times 5 = 15]$

- 8. Find the total polarizability of CO₂, if its susceptibility is 0.985 x 10⁻³. Density of carbon dioxide is 1.977 kg/m³.
- 9. A paramagnetic substance contains 10²⁸ ions/m³ with magnetic moment of one Bohr magnetron. Calculate the paramagnetic susceptibility and the magnetization produced in a uniform magnetic field of 10⁶ A/m, at room temperature.
- 10. A superconductor has a critical temperature of 7.26 K at zero magnetic field and a critical field of 8 x 10⁵ A/m at 0K. Find the critical field at 5K.
- 11. (a). The distance between consecutive (1 1 1) planes in a cubic crystal is 2 Å. Determine the lattice constant.
 - (b). The Debye temperature of diamond is 2400K. Determine the highest possible vibrational frequency at 5K.
 - (c). The hall coefficient of a certain silicon specimen was found to be $-7.35 \times 10^{-5} m^3 C^{-1}$ from 100 to 400 K and the electrical conductivity was found to be 200 $\Omega^{-1} m^{-1}$. Calculate the density and mobility of charges carriers. [1.5+1.5+2]

List of Physics Constants

Speed of light in vacuum (c)	2.997925 x 10 ⁸ ms ⁻¹
Charge of electron (e)	1.6021 x 10 ⁻¹⁹ C
Rest mass of electron (m)	9.109 x 10 ⁻³¹ kg
Atomic mass unit (m _u)	1.6604 x 10 ⁻²⁷ kg
Electron radius (r _e)	2.828 x 10 ⁻¹⁵ m
1 Angstrom unit (Å)	10 ⁻¹⁰ m
Avogadro's number (N _A)	6.02252 x 10 ²⁶ kmol ⁻¹
Boltzmann constant (k _B)	1.38054 x 10 ⁻²³ jK ⁻¹
Thermal energy at 300K (k _B T)	0.0258 J
Planck's constant (h)	6.626 x 10 ⁻³⁴ Js
Permeability of free space (μ ₀)	4π x 10 ⁻⁷ Hm ⁻¹
Permittivity of free space (ε ₀)	8.854 x 10 ⁻¹² Fm ⁻¹
Rydberg constant for Hydrogen (R _H)	1.0967758 x 10 ⁷ m ⁻¹
Universal gas constant (Ru = N _A k _B)	8.3143 x 10 ³ Jkmol ⁻¹ K