

Register No:

Date: 09.01-2020

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE – 27 M.SC. BIG DATA ANALYTICS - I SEMESTER

SEMESTER EXAMINATION – JANUARY 2021

BDA1320: LINEAR ALGEBRA AND LINEAR PROGRAMMING

DURATION: 2.5 HOURS

MAXIMUM MARKS: 70

THIS QUESTION PAPER CONTAINS THREE PRINTED PAGES STUDENTS ARE ALLOWED TO USE SCIENTIFIC CALCULATORS

ANSWER ANY SEVEN QUESTIONS

Notations:

 α

Scalar

v, x, y

Vector

 \boldsymbol{R}

Real Line

€

belongs to

1.

(5+5)

- (a) Define a Vector. Describe the two fundamental vectors and their zero vectors.
- (b) State the five properties of Vector Operations.

2.

(4+4+2)

- (a) Define Vector Spaces. Describe a Vector Space in Geometry (any dimension), state two Spanning Sets for the same. Similarly, describe a Vector Space in \mathbb{R}^n (any 'n'), state two Spanning Sets for the same.
- (b) Consider any two geometric vectors starting from O, say $v_1 \& v_2$. Sketch the geometry of

$$\alpha_1 v_1 + \alpha_2 v_2$$
 where $\alpha_1, \alpha_2 \in R$ and $\alpha_1 + \alpha_2 = 1$

Hint: $\alpha_1 \& \alpha_2$ are scalars, visualize the resultant vector by taking various values of $\alpha_1 \& \alpha_2$ satisfying the condition $\alpha_1 + \alpha_2 = 1$.

(c) Consider $v = \begin{bmatrix} \alpha \\ 2\alpha \end{bmatrix}$, $\alpha \in R$. Though $v \in R^2$, what is the dimension of v?

3.

(7+3)

- (a) Converting a System of Linear Equations to the form: Ax = y. What is the significance of Column Space and Null Space of A?
- (b) Intuitively with an example in Geometric Vector Space (of a dimension of your choice), argue why Union of any Two Vector Subspaces (from the example Vector Space) is not a Vector Space.

4. (4+6)

- (a) When is a matrix said to be in Row Reduced Echelon Form. Explain its significance.
- (b) Solve the following System of Linear Equations using Gaussian Elimination (Use Column and Null Space):

$$4x_1 + 3x_2 + 2x_3 + x_4 = 20$$

$$2x_1 + x_2 + 5x_3 + 3x_4 = 31$$

$$5x_1 - 2x_2 + 4x_3 - x_4 = 9$$

$$x_1 + 2x_2 + 3x_3 + 4x_4 = 30$$

5. (6+4)

- (a) Explain Linear Transformation using two examples one with a matrix of Linearly Independent Columns and the other with a matrix of Linearly Dependent Columns.
- (b) Explain the concept of Basis. Consider the Vector Space \mathbb{R}^2 , how many basis vectors are present? Which is the most widely used basis and what is it called?

6. (6+4)

- (a) Explain Eigenvalues and Eigenvectors with an example.
- (b) As an application of Eigenvectors, explain the Page Rank Algorithm.

7. (3+4+5)

- (a) Define LPP and write down the general LPP
- (b) Define the terms Decision variables, Objective function, linear restriction and non-negative restrictions of an LPP
- (c) What do you mean by Basic variables, Non basic variables and basic solution?

A firm is producing two types of items, say type I and type II. Each unit quantity of type I item requires 5 kgs of raw material and 2 hours of labor time. Each unit quantity of type II item requires 4 kgs of raw material and 8 hours of labor time. The total quantity of raw material available is 20 kgs and the total time available is 16 hours. By selling 1-unit quantity of type I item the firm will get the profit of worth Rs 6 and by selling 1-unit quantity of type II item the firm will get the profit of worth Rs 7. Formulate the LPP and solve using graphical method.

9. (4+6)

- (a) Explain the terms, Unique solution, multiple solution, infeasible solution, and Unbounded solution
- (b) Solve the following LPP using Simplex Method:

Maximize
$$Z = 5X + 3Y$$

Subject to
 $3X + 5Y \le 15$
 $5X + 2Y \le 10$
 $X1 \ge 0, X2 \ge 0$

BDA1320_A _ 20