Reg. No: Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS),BENGALURU-27 B.Sc PHYSICS – V SEMESTER SEMESTER EXAMINATION: OCTOBER 2019 PH5215: Quantum Mechanics, Atomic and Molecular Physics

	Time: 2 ¹ / ₂ Hours	MaxMarks: 70	
	This question paper contains two printed pages and timee parts		
PART A			
	Answer any four of the following. Each question carries 10 marks	(4X10 = 40)	
1 a b) Discuss briefly the failure of Wien's and Rayleigh-Jeans law to explain black b) Discuss the failure of classical physics to explain photoelectric effect ar explanation.	ody radiation. nd give Einstein's [5+5]	
2	Set up time independent Schrodinger wave equation and explain eigen functio values.	n and eigen [10]	
3	Obtain expressions for energy and zero point energy for a harmonic oscillator	[10]	
4 a b	a) Explain G.P.Thomson's experiment on electron diffraction with relevant theory. b) What is the physical interpretation of the wave function ψ ? Explain Born's interpretation.		
5 a b	 Distinguish between normal and anomalous Zeeman effect. Give the quantum theory of normal Zeeman effect. 	[2+8]	
6	Discuss the theory of origin of pure rotational spectrum of a molecule and the interest the spectrum for determining the properties of a molecule	importance of [10]	
	PART B		
	Solve any <u>four</u> of the following. Each question carries 5 marks	(4x5=20 marks)	

- 7 Evaluate de Broglie wavelength of Helium nucleus that is accelerated through 500V. Mass of proton = Mass of neutron = 1.67×10^{-27} kg
- 8 In a measurement that involved an uncertainty of 0.003% the speed of an electron was found to be 800m/s. Calculate the corresponding uncertainty involved in determining its position. Mass of electron =9.1X10⁻³¹kg.
- 9 A quantum particle confined to one dimensional box of width 'a' is in its first excited state. What is the probability of finding the particle between a/4 to 3a/4 in the box.
- 10 Evaluate the following commutations:a) [x, P_x] b)[L_x, P_y]

- 11 In the Stern-Gerlach experiment silver atoms traverses a distance of 0.1 m in a nonhomogeneous magnetic field of field gradient 55 Tm⁻¹. If the velocity of the silver atoms is 450ms⁻¹, calculate the separation between the two trace on the collection plate 0.5m from the pole pieces. Mass of silver atom = 1.79×10^{-25} kg. $\mu_B = 9.2 \times 10^{-24}$ JT⁻¹.
- 12 Determine the J values which can be formed from 2 electron configuration in the L-S coupling scheme given that $I_1=3$, $S_1=1/2$ and $I_2=2$, $S_2=1/2$

PART C

Answer any Five of the following

(5x2=10)

- 13 a) Matter waves are not physical waves. Why?
 - b) Why is the wavenature of matter not apparent to our daily observations?
 - c) A particle in a potential well can have zero energy according to classical physics while it cannot have zero energy according to quantum mechanics. Explain
 - d) Justify Bohr's theory regarding non radiating orbits on the basis of the wave mechanical model of the atom.
 - e) Give an example of an atom for which L=I, S=s and J=j.Explain
 - f) How many elliptical and circular orbits are there for n=3, according to Sommerfeld atom model?