Register No:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE

I SEMESTER EXAMINATION, OCTOBER 2018
M.SC IN BIG DATA ANALYTICS

BDA 1318: LINEAR ALGEBRA AND LINEAR PROGRAMMING PROBLEM
TIME: 2 ½ HRS
MAX MARKS 70
This Question Paper Contains Two Printed Pages and One Part
ANSWER SEVEN QUESTIONS
7 X10 = 70
1.
a. Define matrix with example
b. If $\mathrm{A}+\mathrm{B}=\mathrm{C}$ find the unknown values. $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ are as follows
$\mathrm{A}_{1}=\left(\begin{array}{ccc}2 & 9 & 4 \\ 9 & 5 & 6 \\ 9 & 4 & x_{1}\end{array}\right)$
$\mathrm{B}_{1}=\left(\begin{array}{ccc}10 & 1 / 9 & 0 \\ x_{2} & 3 / 8 & 0 \\ 3 & 5 / 6 & 0\end{array}\right)$
$\mathrm{C}_{1}=\left(\begin{array}{ccc}12 & x_{3} & x_{4} \\ x_{5} & 5.38 & 6 \\ 12 & x_{6} & 5\end{array}\right)$
$\mathrm{A}_{2}=\left(\begin{array}{lll}6 & 9 & 6 \\ 4 & 6 & 4 \\ 5 & 6 & 6\end{array}\right)$
$\mathrm{B}_{2}=\left(\begin{array}{ccc}y_{1} & 7 / 9 & 0 \\ y_{2} & 5 / 9 & 0 \\ 3 / 8 & y_{3} & 0\end{array}\right) \mathrm{C}_{2}=\left(\begin{array}{ccc}5.5 & 8.13 & y_{4} \\ 3.75 & 5.38 & y_{5} \\ 4.635 & 5.38 & y_{6}\end{array}\right)$

Find $\mathrm{C}_{1} \times \mathrm{C}_{2}$
2.
a. Solve the following linear system of equation

$$
\begin{align*}
& X+Y+Z=1 \\
& u X+v Y+w Z=a \\
& u^{2} X+v^{2} Y+w^{2} Z=a^{2} \tag{6+4}
\end{align*}
$$

b. If $\mathrm{A}=\left(\begin{array}{lll}a & 1 & 2 \\ 1 & a & 3 \\ 2 & 3 & a\end{array}\right)$ and $\left|\mathrm{A}^{3}\right|=300763$. Find a real value of a
3.
a. Define following

i. Inverse of Matrix	iii.	Determinant of matrix
ii.	Trace of matrix	iv.

b. What do you mean by Rank of a matrix? Explain the method to reduce a matrix to normal form
a. What are row Echelon matrix and reduced row Echelon matrix? State whether the following matrix is row echelon matrix. Justify your answer $\left(\begin{array}{lll}1 & 5 & 8 \\ 0 & 1 & 7 \\ 0 & 2 & 3\end{array}\right)$
b. Solve the following system:
$2 X_{1}+4 X_{2}-2 X_{3}=2$
$4 X_{1}+9 X_{2}-3 X_{3}=8$
$-2 X_{1}-3 X_{2}+7 X_{3}=10$
5.
a. What is an orthogonal matrix? What are the properties? Check whether following matrix is an orthogonal matrix $\left(\begin{array}{ccc}4 & -3 & 1 \\ 0 & 11 & -5 \\ 6 & 9 & 14\end{array}\right)$
b. Solve the following system of linear equation using Gauss Jordan Elimination method
$2 X+3 Y-3 Z+W=15$
$X-2 Y+3 Z-2 W=-3$
$3 X+5 Y+Z-W=20$
$4 X+Y-Z+W=5$

$$
(4+6)
$$

6.

a. Write a note on Eigen values and Eigen vectors
b. Write out the quadratic form which has matrix $\left(\begin{array}{lll}2 & 3 & 4 \\ 3 & 6 & 7 \\ 4 & 7 & 9\end{array}\right)$. Find the nature of quadratic form using Eigen values.
7.
a. Define general linear programming problem along with mathematical representation. Explain the formulation of linear programming problem
b. Write a note on graphical method to solve Linear Programming Problem $(6+4)$
8.
a. What are slack variables and surplus variables? What is the importance of these? What is the role of artificial variable in LPP model?
b. Describe minimum ratio rule.
9.
a. What are the different types of solution for an LPP? How to identify different kinds of solutions graphically? Explain
b. Indicate how to modify an LPP when a few variables are unrestricted.
c. Describe convex set

A manufacturer produces three types of plastic fixtures. The time (in hours) required for molding, trimming, and packaging is given in Table

Process	Type A	Type B	Type C	Total Time available
Molding	1	2	3/2	12000
Trimming	2/3	2/3	1	4600
Packaging	1/2	1/2	1/3	2400
Profit/unit	\$11	\$16	\$15	

How many dozen of each type of fixture should be produced to obtain a maximum profit?

