

Register Number:

Date: 11-01-2020

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE - 27

M.Sc. STATISTICS – I SEMESTER SEMESTER EXAMINATION – DECEMBER 2020

STA7420: Mathematical Analysis

Time: 21/2hrs

Max:70 Marks

This question paper has TWO printed pages and TWO sections

SECTION - A

Answer any SIX of the following:

6x 3 = 18

1. Distinguish between supremum and infimum of a set. For any set A, Prove that

$$\inf(A) = -\sup(-A).$$

- 2. Define open set. Prove or disprove: A finite intersection of open sets is open
- 3. If [x] represents the integer part of x, Evaluate

$$\int_0^2 \frac{1}{1+x^2} \, \mathrm{d}(x^2 + [x]).$$

4. Discuss the convergence of the integral.

$$\int_{1}^{\infty} \frac{\sin^2 x}{x^4} \, \mathrm{d}x$$

- 5. Derive Legendre Duplication Formula.
- 6. Verify whether F(x) converges uniformly in the interval 1 < x < 2.

$$F(x) = \int_0^\infty x e^{-xt} dt$$

7. Evaluate the limit

$$\lim_{n\to\infty} \frac{1}{n} \sqrt[n]{n!}$$

- 8. Distinguish between pointwise convergence and uniform convergence of a sequence of functions.
- 9. Prove that every uniformly convergent sequence of functions is Cauchy.

SECTION - B

11		Answer any FOUR of the following:		$4 \times 13 = 52$	
10.	A)	Prove that a monotonic sequence converges if and only if it is boun	ided.	(6)	
	•	State and prove the existence of Riemann-Stieltjes integral		(7)	
	B)	State and prove the existence of Memani-Oticique integral		(*)	
11.					
	A)	Establish the change of variable property of Riemann-Stieltjes integ	ıral	(6)	
	B)	If f is monotonic increasing on $[a; b]$, and if α is continuous on $[a; b]$	b], ther	n prove	
		that there exists a point $c \in [a, b]$ such that			
		$\int_{a}^{b} f(x)d \alpha(x) = f(a) \int_{a}^{c} d \alpha(x) + f(b) \int_{c}^{b} d \alpha(x)$			
				(7)	
12.	A)	State and prove Abel's test for the convergence of improper integra	als	(7)	
	B)	Define Beta and Gamma integrals. Establish the relationship between		• •	
	υ,	Domino Botta anta Gamma intogration Enterior and relative in the second and		(-)	
13.				(0)	
	A)	Find the extreme points of the function $x^4 + y^4 - x^2 - y^2 + 1$		(6)	
	B)	Mention the utility of Lagrange's multiplier technique? Using this technique or			
		otherwise, find the maximum volume of rectangular parallelepiped	of surfa		
		a ² .		(7)	
14.	Δ١	Evaluate the double integral			
	73				
		$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (1-x^2-y^2) dx dy$		(6)	
	B)	Suppose $\{f_{n,n} \geq 1\}$ converges uniformly to f on [a, b] and α be	be monotonically		
		increasing on $[a, b]$. If $f_n \in R(\alpha)$ on $[a, b]$ then prove that $f \in R(\alpha)$ on $[a, b]$. (7)			
15.	A)	State and prove Weierstrass test for uniform convergence of function	ons.	(6)	
	,	Prove that a complex valued function is analytic if and only if its real		` '	
	/	parts satisfy Cauchy-Riemann equations.	/-	(7)	
		Early carry, . Harriann, adaminana.		V- /	