Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 M.Sc. MATHEMATICS - II SEMESTER SEMESTER EXAMINATION: APRIL 2018
 MT 8214: COMPLEX ANALYSIS

Time- 2 1/2 hrs
Max Marks-70

This paper contains TWO printed pages

Answer any SEVEN questions from the following.

1. a) Evaluate $\oint_{c} \frac{d z}{(z-a)^{n}},(n \neq 1)$ where $c:|z-a|=r$.
b) State and Prove Morera's Theorem.
2. a) Define analytic function and give an example.
b) State and Prove Cauchy's Theorem for a triangle
3. a) State and Prove Lioville's Theorem.
b) Prove that "The cross ratio of a set of four points is preserved under a Bilinear Transformation".
4. a) Define Zero of an analytic function.
b) Find the radius of convergence of the power series $\sum \frac{z^{n}}{2^{n+1}}$.
c) Let $\sum a_{n}\left(z-z_{0}\right)^{n}$ be a complex power series about the point z_{0}, then there exists a number ' R ' is called the Radius of convergence of $\sum a_{n}\left(z-z_{0}\right)^{n}$, then Prove the following:
(i) The power series $\sum a_{n}\left(z-z_{0}\right)^{n}$ converges absolutely for $\left|z-z_{0}\right|<R$.
(ii) The power series $\sum a_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for $\left|z-z_{0}\right| \leq r$, where $0<r<R$.
(iii) If $\left|z-z_{0}\right|>R$. then the power series $\sum a_{n}\left(z-z_{0}\right)^{n}$ diverges.
5. a) State and Prove Taylor's Theorem.
b) Expand $\frac{z}{(z-1)(2-z)}$ in Laurentz series valid for $|z-1|<1$.
6. a) State and Prove Cauchy Residue Theorem.
b) Evaluate $\int_{\gamma} \frac{z^{2}-z+1}{(z-1)(z-4)(z+3)}, \gamma:|z|=5$, using Cauchy Residue Theorem. (5+5)
7. a) Show that $\int_{0}^{\infty} \frac{d x}{x^{4}+a^{4}}=\frac{\pi}{2 \sqrt{2} a^{3}}$.
b) Evaluate $\int_{0}^{\infty} \frac{\cos x}{x^{2}+1} d x$
8. a) State and Prove Rouche's Theorem.
b) State and Prove Weierstrass factorization Theorem.
9. State and Prove Phragmen- Lindelof Theorem.
10. State and Prove Poisson- Jensen Formula.
