Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 M.Sc. MATHEMATICS - II SEMESTER SEMESTER EXAMINATION: APRIL 2018 <u>MT 8214: COMPLEX ANALYSIS</u>

Time- 2 1/2 hrs

Max Marks-70

This paper contains TWO printed pages

Answer any SEVEN questions from the following.

1.	a) Evaluate $\oint \frac{dz}{(z-a)^n}$, $(n \neq 1)$ where $c: z-a = r$.	
_	b) State and Prove Morera's Theorem.	(5+5)
2.	a) Define analytic function and give an example.b) State and Prove Cauchy's Theorem for a triangle	(2+8)
3.	a) State and Prove Lioville's Theorem.b) Prove that "The cross ratio of a set of four points is preserved under a Bilinear Transformation".	(5+5)
4.	a) Define Zero of an analytic function.	
	b) Find the radius of convergence of the power series $\sum \frac{z^n}{2^{n+1}}$.	
	c) Let $\sum a_n(z-z_0)^n$ be a complex power series about the point z_0 , then there exists a number 'R' is called the Radius of convergence of $\sum a_n(z-z_0)^n$, then Prove the following:	
	(i) The power series $\sum a_n(z-z_0)^n$ converges absolutely for $ z-z_0 <$	<i>R</i> .
	(ii) The power series $\sum a_n(z-z_0)^n$ converges uniformly for $ z-z_0 \le n$ 0 < r < R.	r,. where
5.	(iii) If $ z-z_0 > R$. then the power series $\sum a_n(z-z_0)^n$ diverges. a) State and Prove Taylor's Theorem.	(1+2+7)
	b) Expand $\frac{z}{(z-1)(2-z)}$ in Laurentz series valid for $ z-1 < 1$.	(5+5)

6. a) State and Prove Cauchy Residue Theorem.

b) Evaluate
$$\int_{\gamma} \frac{z^2 - z + 1}{(z - 1)(z - 4)(z + 3)}$$
, $\gamma : |z| = 5$, using Cauchy Residue Theorem. (5+5)

7. a) Show that
$$\int_{0}^{\infty} \frac{dx}{x^{4} + a^{4}} = \frac{\pi}{2\sqrt{2}a^{3}}.$$

b) Evaluate
$$\int_{0}^{\infty} \frac{\cos x}{x^{2} + 1} dx.$$
 (6+4)

8. a) State and Prove Rouche's Theorem. (7+3) b) State and Prove Weierstrass factorization Theorem. (10)

(10)

- 9. State and Prove Phragmen- Lindelof Theorem.
- 10. State and Prove Poisson- Jensen Formula.