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Answer any SEVEN of the following questions.                                     10X7=70
1. a)  Prove that every closed subspace of a compact space is compact.                 (4)
b)  Prove that every compact space is countable compact.                                   (6)
2. a)  If every countable open cover of 
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 has a finite sub cover then prove that 
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 is countable compact.                                                                            (6)
b)  Prove that a continuous bijection from a compact space onto a Hausdorff space is  

     a Homeomorphism.                                                                                            (4)
3. a) State the countability axioms. Prove that second countability is both topological 

    and hereditary.                                                                                                     (7)
b) Prove that every compact space is a Lindelof space.                                          (3)
4. a)  Prove that 
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is regular if and only if 
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 and 
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are regular.                          (5)
b)  Prove that 
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is connected if and only if 
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 and 
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are connected.                (5)
5. a)  Define a 
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space.  Prove that 
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 is a 
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space if and only if all singleton 
     sets are closed.                                                                                                    (5)
b)  Prove that a point 
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in a 
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space 
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 is a limit point of a subset 
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 of 
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if 
     and only if every open set containing 
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contains infinitely many distinct points of 
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.                                                                                                                         (5)
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6. a)  Define a regular space. Prove that a regular 
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space is a 
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space.            (4)
b)  Prove that 
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 is regular if and only if given any open set 
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7. a)  Prove that a closed subspace of a normal space is normal.                                (3)
b)  Prove that a metric space is a 
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space.                                                           (7)
8.  Prove that a space 
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 is normal if and only if given any two disjoint closed sets 
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and the interval 
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there exists a continuous function 
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9.  Prove that a space 
[image: image36.wmf](

)

Á

,

X

 is normal if and only if for every closed set 
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of 
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and a  

  real valued continuous function 
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 there exist a continuous extension 
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10. a) If 
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 is a locally finite collection of subset of 
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 then prove that 
i. The collection 
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of the closures of the elements of 
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is locally finite. 
ii. 
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                                                                                                 (5)
      b) Define paracompact space. Give an example. Prove that every closed subspace 
     of a paracompact space is paracompact.                                                            (5)
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