Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.Sc. MATHEMATICS - II SEMESTER END SEMESTER EXAMINATION: APRIL 2022 (Examination conducted in July 2022)

MT 8218 - COMPLEX ANALYSIS

Time- 2 ½ hrs Max Marks-70

This question paper contains **TWO** printed sides.

Answer any 7 questions:

7*10=70

1. State and prove Cauchy's theorem in a circular disc.

[10m]

- 2. Let $\sum_{n=0}^{\infty} a_n z^n$ be a given power series. Let $A = \lim_{n \to \infty} |a_n|^{1/n}$ and let R = 1/A then prove that
 - i. If $0 < A < \infty$ then $0 < R < \infty$ holds and the power series converges for all z with $|z| \le R$ and the series diverges for |z| > R.
 - ii. If A=0 then $R=\infty$ and the series $\sum_{n=0}^{\infty}a_nz^n$ converges for all $z\in\mathbb{C}$.
 - iii. If $A = \infty$ then R = 0 and the series $\sum_{n=0}^{\infty} a_n z^n$ diverges for all $z \neq 0$. [10m]
- 3. Find the Laurent's series expansion for $f(x) = \frac{z}{(z-1)(z-3)}$ when

i. |z| < 1

ii.
$$|z - 1| < 2$$

[5m+5m]

- 4. A. If f and g are entire functions and $|f(z)| \le |g(z)|, \forall z \in \mathbb{C}$, prove that f(z) = c.g(z) for some constant c.
 - B. Find the residue of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$.

[6m+4m]

- 5. A. Using Cauchy's Residue Theorem evaluate $\int_{c} \frac{\cos z}{z(z-1)^2} dz$, where c:|z|=3.
 - B. Discuss the singularity of the function $f(z) = \frac{1 e^z}{1 + e^z}$ at $z = \infty$.

[5m+5m]

- 6. A. Evaluate $\int_0^{2\pi} \frac{d\theta}{1 2p\cos\theta + p^2}$, 0 .
 - B. Define Zero of a function.

[8m+2m]

- 7. A. If *n* is a positive integer then show that $\int_0^{2\pi} \sin(n\theta \sin\theta) e^{\cos\theta} d\theta = 0$
 - B. Evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx$, a > 0

[5m+5m]

8. State and prove Hadamard's Three Circle Theorem.

[10m]

- 9. A. State and prove Phragmen-Lindelöf Theorem.
 - B. If $|z| \le 1$ and $p \ge 0$ then show that $|1 Ep(z)| \le |z|^{p+1}$.

[6m+4m]

10. State and prove Poisson's Jensens Formula.

[10m]