Signature and Name of Invigilator

1.	(Signature)	
	(Name)	
2	(Signature)	

OMKSh	eet N	0.:										
To be filled by the Candidat												
Roll No.												
(In figures as per admission card)												

(Name)

PAPER - III Roll No.

(In words)

Time : $2\frac{1}{2}$ hours

COMPUTER SCIENCE AND APPLICATIONS

[Maximum Marks: 150 Number of Questions in this Booklet: 75

Number of Pages in this Booklet: 16

Instructions for the Candidates

- 1. Write your roll number in the space provided on the top of
- This paper consists of seventy five multiple-choice type of questions.
- 3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.
 - (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given.
 - (iii) After this verification is over, the Test Booklet Number should be entered on the OMR Sheet and the OMR Sheet Number should be entered on this Test Booklet.
- 4. Each item has four alternative responses marked (1), (2), (3) and (4). You have to darken the circle as indicated below on the correct response against each item.

Example: ① ② ④ ④ where (3) is the correct response.

- 5. Your responses to the items are to be indicated in the OMR Sheet given inside the Booklet only. If you mark your response at any place other than in the circle in the OMR Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using white fluid, you will render yourself liable to 9. disqualification.
- 9. You have to return the original OMR Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are however, allowed to carry original question booklet and duplicate copy of OMR Sheet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There are no negative marks for incorrect answers.

परीक्षार्थियों के लिए निर्देश

- 1. इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
- इस प्रश्न पत्र में पचहत्तर बहविकल्पीय प्रश्न हैं।
- 3. परीक्षा प्रारम्भ होने पर, प्रश्न पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है :
 - प्रश्न पुस्तिका खोलने के लिए पुस्तिका पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर सील की पुस्तिका स्वीकार न करें।
 - कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा आ गये हों या सीरियल में न हों अर्थात किसी भी प्रकार की त्रृटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न पुस्तिका का नंबर OMR पत्रक पर अंकित करें और OMR पत्रक का नंबर इस प्रश्न पुस्तिका पर अंकित कर दें।
- प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (1), (2), (3) तथा (4) दिये गये हैं। आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे

उदाहरण: (1) (2) ■ (4) जबिक (3) सही उत्तर है।

- प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं। यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिन्हांकित करते हैं, तो उसका मूल्यांकन नहीं होगा।
- 6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पहें।
- 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
- यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं।
- आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें। हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न पुस्तिका तथा OMR पत्रक की डुप्लीकेट प्रति अपने साथ ले जा सकते हैं।
- 10. केवल नीले/काले बाल प्वाईंट पेन का ही इस्तेमाल करें।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
- 12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

1 P.T.O.

COMPUTER SCIENCE AND APPLICATIONS PAPER - III

Note:	This paper contains seventy five (75) objective type questions of two (2) marks each.
	All questions are compulsory.

1.	of th	three outputs x_1 e form $101x_1x_2x_3$ e vector address	$c_3 \bar{0}0$. W	That is the sec	ond highe	est priority	y vector add	lress in he	
	(1)	ВС	(2)	A4	(3)	BD	(4)	7 /	1
2.	MVI MOV MOV MVI OUT	t will be the ou B, 82H / A, B / C, A D, 37H PORT1	tput at	PORT1 if the	following	program	is executed	?	
	HLT (1)	37H	(2)	82H	(3)	В9Н	(4)	00H	
3.	Whi	ch of the follow	ing 808	35 microproces	sor hard	ware inter	rupt has the	e lowest p	riority?
	(1)	RST 6.5	(2)	RST 7.5	(3)	TRAP	(4)	-	
4.	100 r	vnamic RAM hansec and a memorist is required for	ory cycl	e requires 250					
	(1)	0.64	(2)	0.96	(3)	2.00	(4)	0.32	
5.	The per s	MA controller to mbled from a december of the condition o	evice to and ex much	hat transmits ecuting instru will the CPU	characters ctions at a be slowed	s at a rate an average d down be	e of 4800 character of one ecause of the	aracters pe million in e DMA tra	er second. structions
	(1)	0.06%	(2)	0.12%	(3)	1.2%	(4)	2.5%	
6.	(1)	PU handles intended by checking in the by checking in whenever and in the by checking in the by the	iterrupt iterrupt nterrup	register after register at the ot is registered	execution e end of t	n of each : he fetch c	instruction ycle		
D-87	15				2				Paper-III

7.	father parent male parent parent parent male male female	n the following ser(X, Y): nt(X, Y), (X), nt(Sally, Bob), nt(Jim, Bob), nt(Alice, Jane), nt(Thomas, Jane), (Bob), (Jim), le(Salley), le(Alice).	-	olog clause	es:				4	
		many atoms are	matche	ed to the va	ariable	e 'X' b	efore the	query	-61	
		r(X, Jane) reports				(2)	2	-34	(4)	3.2
	(1)	1	(2)	2		(3)	3	6	(4)	4
8.	Forw	vard chaining sy	stems	are		whe	ere as ba	ckward	chair	ning systems are
	(1)	Data driven, Da	ta driv	en	(2)	Goal	driven, I	Data driv	en	
	(3)	Data driven, Go	al driv	en	(4)	Goal	driven, C	Goal driv	en	
9.	Matc	h the following v	vrt n	roorammin	o land	7112 <i>0</i> 0				
<i>J</i> •	water	List - I	v.i.t. p	iogrammini	List -	_	3.	1		
	(a)	JAVA		(i) Dyna			ect orient	ed		
	(b)	Python				-	bject orie			
	(c)	Prolog					oriented	iiica		
	(d)	ADA			•	-	n-object c	riontad		
	Code			(iv) Dyna	шисат	1y 1101	ii-object c	riciica		
	Cour	(a) (b) (c)	(d)							
	(1)	(iii) (i) (ii)	(iv)							
	(2)	(i) (ii) (ii)	(iv)	. 17						
	(3)	(i) (iii) (iv)	(ii)							
	(4)	(ii) (iv) (i)	(iii)							
10.	The	combination of ar	n IP ad	dross and	a nort	hum	har ic kn	own ac		
10.	(1)	network number		diess and	(2)		et address			•
- 1	(3)	subnet mask nui			(4)		address	'		
	(5)	Subject mask nar	iiibci		(1)	17171	. addicss			
11.	A ne	twork with bandy	vidth o	f 10 Mbps o	can na	iss on	lv an avei	age of 15	5.000	frames per minute
										t of this network?
	(1)	2 Mbps		60 Mbps	,	(3)	120 Mbp		(4)	10 Mbps
			()	I -		(-)	Ι		()	Ι -
12.	Cons	ider a subnet wit	h 720 r	outers. If a	a three	e-level	l hierarch	v is choo	sen v	vith eight clusters,
		and the second s						•		he routing table is
	(1)	25	(2)	27		(3)	53		(4)	72
D-87	15				2					Dames III
					3					Paper-III

	(1) (2) (3) (4)	refers to the refers to bro refers to loop	adcast on adcast on	the local a distant						
14.		lectronic mai sages ?	l, which	of the foll	lowing	prot	ocols allows	s the trans	sfer of mul	timedia
	(1)	IMAP	(2)	SMTP		(3)	POP 3	(4)	MIME	25
15.		evice is sendin ,000 character		a at the ra	te of 20	000 bp	s. How lon		E 1	a file of
	(1)	50	(2)	200		(3)	400	(4)	800	
16.	$s_i \le 1$	activity - Selec f _i . Activities i	i and j are	compatib		- 1		610		
	(1)	$s_i \ge f_j$	(2)	$s_j \ge f_i$		(3)	$s_i \ge f_j$ or s_j	$\geq f_i$ (4)	$s_i \ge f_j$ and	$s_j \ge f_i$
17.	Give	en two sequen			1		1/			
		$X = \langle a, b, c,$	b, d, a, b		1		1/			
		$Y = \langle b, d, c,$	$a, b, a\rangle$.				1000			
	The	longest comm		- 4		Y is:				
	(1)	$\langle b, c, a \rangle$	(2)	⟨c,a,b⟩		(3)	⟨b, c, a, a⟩	(4)	⟨b, c, b, a	>
18.		ere are n integ			eger ha	s d di	gits and eac	h digit is ir	the set {1,	2,, k},
	(1)	x sort can sort O(d n k)		O(d n ^k)		(3)	O((d+n)k) (4)	O(d(n+k))	())
19.	The	solution of th	e recurrei	nce relation	n					
4	1	$\theta(1)$			if $n \leq$					
(T(n)	$0 \le \left\{ T\left(\frac{n}{s}\right) + T\right\}$	$7\left(\frac{7n}{10} + 6\right)$	+ O(n)	if $n > 1$	80				
	is:	2/ /								
	(1)	O(lg n)			(2)	O(n)			

(4)

4

In a classful addressing, the IP addresses with 0 (zero) as network number :

(1) Greedy algorithm, θ(V³)
 (3) Dynamic programming, θ(V³)

 $O(n \lg n)$

on a directed graph in

20.

Floyd-Warshall algorithm utilizes

13.

to solve the all-pairs shortest paths problem

time. (2) Greedy algorithm, $\theta(V^2 \lg n)$

None of the above

(4) Dynamic programming, $\theta(V^2 \lg n)$

Let n = 4 and $(a_1, a_2, a_3, a_4) = (do, if, int, while)$. Let $p(1:4) = \left(\frac{3}{8}, \frac{3}{8}, \frac{1}{8}, \frac{1}{8}\right)$ and 21.

 $q(1:4) = \left(\frac{2}{8}, \frac{3}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right)$ where p(i) and q(i) denotes the probability with which we search a_i and the identifier x being searched satisfy $a_i < x < a_{i+1}$ respectively. The optimal search tree is given by:

- 22. The family of context sensitive languages is reversal.
 - (2)not closed, not closed
 - (1)closed, not closed (3)closed, closed
- not closed, closed (4)

23. Match the following:

List - I

- ${a^n b^n | n > 0}$ is a deterministic (a) context free language
- but not recursive language (i)

List - II

- The complement of $\{a^n b^n a^n | n > 0\}$ (b) is a context free language
- (ii) but not context free language

under union and

- {aⁿ bⁿ aⁿ} is context sensitive language (c)
- (iii) but can not be accepted by a deterministic pushdown automation
- (d) L is a recursive language
- (iv) but not regular

Codes:

- (a) (b)
- (d) (ii) (1)(i) (iii) (iv)
- (2)(ii) (iv) (iii) (i)
- (3)(iv) (i) (iii) (ii)
- (iv) (iii) (i) (ii)
- 24. The language of all non-null strings of a's can be defined by a context free grammar as follow:

$$S \rightarrow a S |S a| a$$

The word a³ can be generated by

different trees.

- Three
- (3)Four
- (4) Five

D-8715

5

Paper-III

under

25.		ch one of the following		onal	quality attribute	s is not highly affected by the
	(1)	Performance	•	(2)	Reliability	
	(3)	Usability		(2) (4)	Portability	
	(3)	Osability		(1)	Tortability	
26.	The	context free grammar g S → XYX	iven by			
		$X \rightarrow aX bX \lambda$. 10
		$Y \rightarrow bbb$				6
	gene	rates the language which	ch is defined	d by i	egular expressio	n:
	(1)	(a + b)*bbb		(2)		11 11 1
	(3)	$(a+b)^*(bbb)(a+b)^*$		(4)	(a+b)(bbb)(a+	b)*
		_	4.44			
27.		e are exactly				three states x , y and z over the
		abet $\{a, b\}$ where x is algorithm.	•	art st		5000
	(1)	64 (2)	256		(3) 1024	(4) 5832
20	Cirro	m tha fallanning true la			6 1	-01
28.		n the following two la	nguages :		011	
	L ₁ -	${a^{n} b a^{n} n > 0}$ ${a^{n} b a^{n} b^{n+1} n > 0}$				
		ch of the following is co	orroct 2	- 1		
	(1)	L_1 is context free lang		, is n	ot context free la	ทงแลงค
	(2)	L_1 is not context free l	_	-		
	(3)	Both L_1 and L_2 are con				gauge
	(4)	Both L_1 and L_2 are no				
	` '	1 2	41	20		
29.	Whi	ch of the following is us	sed to make	an A	bstract class?	
	(1)	Making atleast one m	ember func	tion a	ns pure virtual fu	ınction
	(2)	Making atleast one me				n
	(3)	Declaring as Abstract			•	
	(4)	Declaring as Abstract	class using	stati	c keyword	
20	1	1 4 6 11 11 11		1	1 1 11	
30.	Matc	th the following with re	ererence to c	object		ing:
4	(2)	List - I Polymorphism	(i) Picki	na h	List - II	nd attributes with operations
/	(a)	1 Olymorphism	* *	_	te to model an o	-
- ((b)	Inheritance		-		tails of methods from users of
- 1	(2)		objec	_	Promiser ere	••••••••••••••••••••••••••••••••••••••
	(c)	Encapsulation	,		ilar operations to	o do similar things
	(d)	Abstraction			w classes from ex	
	Code	es:				_
	1	(a) (b) (c) (d)				
	(1)	(iv) (iii) (i) (ii)				
	(2)	(iii) (iv) (i) (ii)				
	(3)	(iii) (i) (ii) (iv)				
	(4)	(iv) (iii) (ii) (i)				
D ^-	, <u> </u>					
D-87	15			6		Paper-III

www.examrace.com

31.	(a) (b) (c) (d)	CRC based desig one or two use several progra project co-ordi one or two sys	ers represen mmers inators	tatives	nsists (of:				
	Code (1)	e s : (a) and (c)				(a), (b), (c)		d)		1.0
	(3)	(a), (c) and (d)			(4)	(a), (b) and	d (d)			63
32.		end points of a y and y are specified points of y are specified points of y and y a	ation of stra x = 1, y = 3 x = 1, y = 3 x = 1, y = 3	ight line 3; $x = 2$, 3; $x = 2$, 3; $x = 2$,	y = 6; y = 4; y = 6;	x=3, y=9 x=3, y=9 x=3, y=9		ach valu	e of <i>y</i> a	is x steps from
33.		ch of the follow		c primit	ives a	re conside	ered as	the bas	ic build	ding blocks of
	comp (a)	outer graphics ? Points	, (b) Lin	ies	(c)	Polylines	1	(d) Po	olygons	
	Code		(b) Liii	103	(c)	1 Ory III C3		(α) Τ	ny goris	,
	(1)	(a) only			(2)	(a) and (b))			
	(3)	(a), (b) and (c)			(4)	(a), (b), (c)) and (c	d)		
34.	Javas (a) (b) (c) Code (1)	script and Java Javascripts syn Javascript is st Java and Javas es: (a) only	itax is loose ripped dow cript are or	ly based n versic iginated	l on Ja on of J l from	nva's synta: ava	x Java	re true. (4) (a)	and (c)
35.		ch of the follow	ring stateme	ents are	true	with refere	ence to	the way	y of de	scribing XML
((a) (b) (c) Code	XML uses DTI XML uses XSL XML uses a de	to describe	the dat	a	e the data				
	(1)	(a) only	(2) (b)	only		(3) (a) a	and (b)	(4) (a)	and (c)
36.	Whice (a) (b) Code	ch of the follow: A class can inl An Abstract cla	nerit only o	ne Abstı	ract cl	ass but ma	y inher	it severa	al inter	faces.
	(1) (3)	(a) is true Both (a) and (b	o) are true	(2) (4)	(b) is Neith	true ner (a) nor	(b) is tr	ue		
D-87 1	15				7					Paper-III

- 42. In an operating system, indivisibility of operation means:
 - Operation is interruptable
 - (2) Race - condition may occur
 - Processor can not be pre-empted (3)
 - All of the above (4)
- A horn clause is
 - A clause in which no variables occur in the expression
 - A clause that has at least one negative literal
 - (3) A disjunction of a number of literals
 - A clause that has at most one positive literal
- In Propositional Logic, given P and P \rightarrow Q, we can infer 44.
 - $(1) \sim Q$
- (2) O
- $P \wedge O$
- 45. Reasoning strategies used in expert systems include
 - Forward chaining, backward chaining and problem reduction
 - Forward chaining, backward chaining and boundary mutation (2)
 - Forward chaining, backward chaining and back propagation (3)
 - Backward chaining, problem reduction and boundary mutation
- 46. Language model used in LISP is
 - (1)
- (2) Logic programming
- Functional programming (2) Logic programming Object oriented programming (4) All of the above
- In constraint satisfaction problem, constraints can be stated as 47.
 - Arithmatic equations and inequalities that bind the values of variables
 - Arithmatic equations and inequalities that doesn't bind any restriction over variables (2)
 - Arithmatic equations that impose restrictions over variables (3)
 - (4) Arithmatic equations that discard constraints over the given variables
- 48. As compared to rental and leasing methods to acquire computer systems for a Management Information System (MIS), purchase method has following advantage:
 - It has high level of flexibility
 - It doesn't require cash up-front
 - (3) It is a business investment
 - (4) Little risk of obsolescence
- Consider the conditional entropy and mutual information for the binary symmetric channel.

The input source has alphabet $X = \{0, 1\}$ and associated probabilities $\left\{\frac{1}{2}, \frac{1}{2}\right\}$. The channel

matrix is $\begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix}$ where p is the transition probability. Then the conditional entropy

is given by:

- 1 (2) $-p\log(p) (1-p)\log(1-p)$ 1+ $p\log(p) + (1-p)\log(1-p)$ (4) 0

- **50.** Which of the following is **not** a lossy compression technique?
 - (1) JPEG
- (2) MPEG
- (3) FFT
- (4) Arithmetic coding

- 51. Blind image deconvolution is
 - (1) Combination of blur identification and image restoration
 - (2) Combination of segmentation and classification
 - (3) Combination of blur and non-blur image
 - (4) None of the above
- **52.** A basic feasible solution of a linear programming problem is said to be one of the basic variable is zero.

if at least

- (1) degenerate
- (2) non-degenerate (3)
 - infeasible
- (4) unbounded

- **53.** Consider the following conditions:
 - (a) The solution must be feasible, i.e. it must satisfy all the supply and demand constraints.
 - (b) The number of positive allocations must be equal to m+n-1, where m is the number of rows and n is the number of columns.
 - (c) All the positive allocations must be in independent positions.

The initial solution of a transportation problem is said to be non-degenerate basic feasible solution if it satisfies :

Codes:

(1) (a) and (b) only

(2) (a) and (c) only

(3) (b) and (c) only

- (4) (a), (b) and (c)
- **54.** Consider the following transportation problem :

		Stores										
		139	II	III	IV	Supply						
sə	A	4	6	8	13	50						
tori	В	13	11	10	8	70						
Factories	< C	14	4	10	13	30						
	D	9	11	13	8	50						
1.	Demand	25	35	105	20							

The transportation cost in the initial basic feasible solution of the above transportation problem using Vogel's Approximation method is :

- (1) 1450
- (2) 1465
- (3) 1480
- (4) 1520
- 55. The character set used in Windows 2000 operating system is
 - (1) 8 bit ASCII

- (2) Extended ASCII
- (3) 16 bit UNICODE
- (4) 12 bit UNICODE
- **56.** In Unix, the command to enable execution permission for file "mylife" by all is
 - (1) Chmod ugo + X myfile
- (2) Chmod a + X myfile
- (3) Chmod +X myfile
- (4) All of the above

D-8715

10

57. What will be the output of the following Unix command?

\$rm chap0\[1 - 3\]

- Remove file chap0[1 3] (1)
- Remove file chap01, chap02, chap03 (2)
- Remove file chap\ $[1 3\]$ (3)
- (4) None of the above
- Which of the following statements regarding the features of the object-oriented approach to 58. databases are true?
 - (a) The ability to develop more realistic models of the real world.
 - The ability to represent the world in a non-geometric way. (b)
 - The ability to develop databases using natural language approaches. (c)
 - The need to split objects into their component parts. (d)
 - The ability to develop database models based on location rather than state and behaviour. (e)

Codes:

- (1) (a), (b) and (c) (2)
- (b), (c) and (d)
- (3) (a), (d) and (e)
- (c), (d) and (e)

59. Consider the following database table:

Create table test(

```
one integer,
two integer,
primary key(one),
unique(two),
check(one \ge 1 \text{ and } \le 10),
check(two > = 1 \text{ and } < = 5)
);
```

How many data records/tuples atmost can this table contain?

- (1)5
- (2) 10
- (3) 15
- (4)50
- Suppose ORACLE relation R(A, B) currently has tuples {(1, 2), (1, 3), (3, 4)} and relation S(B, C) currently has {(2, 5), (4, 6), (7, 8)}. Consider the following two SQL queries SQ1 and SQ2:

SO1: Select *

From R Full Join S

On R.B = S.B;

SO2 : Select *

From R Inner Join S

On R.B = S.B;

The numbers of tuples in the result of the SQL query SQ1 and the SQL query SQ2 are given by:

- 2 and 6 respectively (1)
- (2) 6 and 2 respectively
- 2 and 4 respectively
- (4)4 and 2 respectively

D-8715

11

- **61.** Consider the following three SQL queries (Assume the data in the people table):
 - (a) Select Name from people where Age>21;
 - (b) Select Name from people where Height>180;
 - (c) Select Name from people where (Age>21) or (Height>180);

If the SQL queries (a) and (b) above, return 10 rows and 7 rows in the result set respectively, then what is one possible number of rows returned by the SQL query (c)?

- (1) 3
- (2) 7
- (3) 10
- (4) 21
- **62.** The distributed system is a collection of <u>(P)</u> and communication is achieved in distributed system by <u>(Q)</u>, where (P) and (Q) are :
 - (1) Loosely coupled hardware on tightly coupled software and disk sharing, respectively.
 - (2) Tightly coupled hardware on loosely coupled software and shared memory, respectively.
 - (3) Tightly coupled software on loosely coupled hardware and message passing, respectively.
 - (4) Loosely coupled software on tightly coupled hardware and file sharing, respectively.
- 63. Consider the following three tables R, S and T. In this question, all the join operations are natural joins (\bowtie). (π) is the projection operation of a relation :

]	R		S			T	
A	В	В		С	A		С
1	2	6		2	7		1
3	2 2	2		4	1		2
5	6	8		1	9		3
7	8	8		3	5		4
9	8	2		5	3		5

Possible answer tables for this question are also given as below:

		-									
A	В	C	18								
1	2	4	19								
1	2	5	1								
3	2	4									
3	2	5	A	В	С	A	В	С			
5	6	2	1	2	2	1	6	2			
7	8	1	3	2	5	3	2	5	A	В	С
7	8	3	5	6	4	5	2	4	3	2	5
9	8	1	7	8	1	7	8	1	7	8	1
9	8	3	9	8	3	9	8	3	9	8	3
0	(a)			(b)			(c)		•	(d)	•
TATE				(T)		<i>(</i> 0 -	>				

What is the resulting table of $\pi_{A,B}(R \bowtie T) \bowtie \pi_{B,C}(S \bowtie T)$?

- (1) (a)
- (2) (b)
- (3) (c)
- (4) (d)

D-8715

12

64. Consider the two class classification task that consists of the following points :

Class $C_1: [-1, -1], [-1, 1], [1, -1]$

Class $C_2 : [1, 1]$

The decision boundary between the two classes C_1 and C_2 using single perceptron is given by :

 $(1) \quad x_1 - x_2 - 0.5 = 0$

- (2) $-x_1 + x_2 0.5 = 0$
- (3) $0.5(x_1 + x_2) 1.5 = 0$
- (4) $x_1 + x_2 0.5 = 0$
- **65.** Consider a standard additive model consisting of rules of the form of If x is A_i AND y is B_i THEN z is C_i .

Given crisp inputs $x = x_0$, $y = y_0$, the output of the model is :

- (1) $z = \sum_{i} \mu_{A_i}(x_0) \mu_{B_i}(y_0) \mu_{C_i}(z)$
- (2) $z = \sum_{i} \mu_{A_i}(x_0) \mu_{B_i}(y_0)$
- (3) $z = \operatorname{centroid}\left(\sum_{i} \mu_{A_{i}}(x_{0}) \mu_{B_{i}}(y_{0}) \mu_{C_{i}}(z)\right)$
- (4) $z = \operatorname{centroid}\left(\sum_{i} \mu_{A_{i}}(x_{0}) \mu_{B_{i}}(y_{0})\right)$
- $\mathbf{66.}$ A bell-shaped membership function is specified by three parameters (a, b, c) as follows:

(1)
$$\frac{1}{1 + \left(\frac{x-c}{a}\right)^b}$$
 (2) $\frac{1}{1 + \left(\frac{x-c}{a}\right)^{2b}}$ (3) $1 + \left(\frac{x-c}{a}\right)^b$ (4) $1 - \left(\frac{x-c}{a}\right)^{2b}$

- 67. Which of the following is/are the principle components of a memory-tube display?
 - (a) Flooding gun

- (b) Collector
- (c) Phosphorus grains
- (d) Ground

Codes:

- (1) (a) and (b)
- (2) (c) only
- (3) (d) only
- (4) All the above
- **68.** Which of the following steps is/are not required for analog to digital conversion?
 - (a) Sensing
- (b) Conversion
- (c) Amplification

- (d) Conditioning
- (e) Quantization
- Codes:
- (1) (a) and (b)

(2) (c) and (d)

(3) (a), (b) and (e)

(4) None of the above

D-8715

69. Which raster locations would be chosen by Bresenham's algorithm when scan converting a line from (1, 1) to (8, 5)?

(3)

(1)	x	y
	1	1
	2	2
	2 3 4	2 3 3 4 4 5 6
	4	3
	5 6	4
	6	4
	7	5
	8	6

x	y
1	1
2	2
3	2
4	3
5	4
6	5
7	6
8	7

(2)

x	y
1	1
2 3	2
3	2
4	2 3
5	3
6	4
7	4
8	5
	20.0

(4)	x	y
	1	1
	2	2
	1 2 3 4 5 6 7 8	2 2 3 5 4 5
	4	3
-	5	5
- 1	6	4
€	7	5
4	8	5
4 6	4	

70. Consider a unit square centred at origin. The coordinates of the square are translated by a factor $\left(\frac{1}{2}, 1\right)$ and rotated by an angle of 90°. What shall be the coordinates of the new square ?

(1)
$$\left(\frac{-1}{2}, 0\right), \left(\frac{-1}{2}, 1\right), \left(\frac{-3}{2}, 1\right), \left(\frac{-3}{2}, 0\right)$$

(2)
$$\left(\frac{-1}{2},0\right), \left(\frac{1}{2},1\right), \left(\frac{3}{2},1\right), \left(\frac{3}{2},0\right)$$

(3)
$$\left(\frac{-1}{2},0\right), \left(\frac{1}{2},0\right), \left(\frac{-3}{2},1\right), \left(\frac{-3}{2},0\right)$$

$$(4) \quad \left(\frac{-1}{2}, 0\right), \left(\frac{1}{2}, 1\right), \left(\frac{-3}{2}, 1\right), \left(\frac{-3}{2}, 0\right)$$

71. Which of the following is/are the components of a CRT?

- (a) Electron Gun
- (b) Control Electrode
- (c) Focusing Electrode
- (d) Phosphor Coated Screen

Codes:

(1) (a) and (d)

- (2) (a), (b) and (d)
- (3) (a), (b), (c) and (d)
- (4) (a), (c) and (d)

D-8715

- **72.** Which one of the following statements is **incorrect**?
 - (1) Pareto analysis is a statistical method used for analyzing causes, and is one of the primary tools for quality management.
 - (2) Reliability of a software specifies the probability of failure-free operation of that software for a given time duration.
 - (3) The reliability of a system can also be specified as the Mean Time To Failure (MTTF).
 - (4) In white-box testing, the test cases are decided from the specifications or the requirements.
- 73. Consider a language A defined over the alphabet $\Sigma = \{0, 1\}$ as $A = \{0^{\lfloor n/2 \rfloor} 1^n : n > 0\}$

The expression $\lfloor n/2 \rfloor$ means the floor of n/2, or what you get by rounding n/2 down to the nearest integer.

Which of the following is **not** an example of a string in A?

- (1) 011
- (2) 0111
- (3) 0011
- (4) 001111
- **74.** Which one of the following statements, related to the requirements phase in Software Engineering, is **incorrect**?
 - (1) "Requirement validation" is one of the activities in the requirements phase.
 - (2) "Prototyping" is one of the methods for requirement analysis.
 - (3) "Modelling-oriented approach" is one of the methods for specifying the functional specifications.
 - (4) "Function points" is one of the most commonly used size metric for requirements.
- 75. tag is an extension to HTML that can enclose any number of Javascript statements.
 - (1) <SCRIPT>
- (2) <BODY>
- (3) <HEAD>
- (4) <TITLE>

- o 0 o -

15

Space For Rough Work

D-8715