PAPER-II COMPUTER SCIENCE & APPLICATIONS

COMPUTER SCIENCE	E & APPLICATIONS									
Signature and Name of Invigilator										
1. (Signature)	OMR Sheet No.:									
(Name)	(To be filled by the Candidate)									
2. (Signature)	Roll No.									
(Name)	(In figures as per admission card)									
	Roll No									
J A 0 8 7 1 7	(In words)									
Time: $1^{1}/_{4}$ hours]	[Maximum Marks : 100									
Number of Pages in this Booklet : 16	Number of Questions in this Booklet: 50									
Instructions for the Candidates	परीक्षार्थियों के लिए निर्देश									
1. Write your roll number in the space provided on the top of this page.	1. इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए ।									
 This paper consists of fifty multiple-choice type of questions. 	 इस प्रेशन-पत्र में पचास बहुविकल्पीय प्रश्न हैं । परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी । पहले 									
3. At the commencement of examination, the question booklet	पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्नलिखित									
will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:	जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है :									
(i) To have access to the Question Booklet, tear off the paper	(i) प्रश्न-पुस्तिका खोलने के लिए पुस्तिका पर लगी कागज की सील को फाड़ लें । खुली हुई या बिना स्टीकर-सील की पुस्तिका									
seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.	स्वीकार न करें ।									
(ii) Tally the number of pages and number of questions in	(ii) कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे									
the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing	हैं । दोषपूर्ण पुस्तिका जिनमें पुष्ठ/प्रश्न कम हों या दुबारा ओ									
or duplicate or not in serial order or any other	गर्य हो यो सीरियल में न हो अर्थात किसी भी प्रकार की									
discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period	त्रृटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्नु-पुस्तिका ले लें ।									
of 5 minutes. Afterwards, neither the Question Booklet	इसके लिए आपको पाँच मिनट दिये जायेंगे । उसके बाद न									
will be replaced nor any extra time will be given.	तो आपको प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको									
(iii) After this verification is over, the Test Booklet Number should be entered on the OMR Sheet and the OMR	अतिरिक्त समय दिया जायेगा । (iii) इस जाँच के बाद प्रश्न-पुरितका का नंबर OMR पत्रक पर अंकित करें									
Sheet Number should be entered on this Test Booklet.	और OMR पत्रक का नेंबर इस प्रश्न-पुस्तिका पर अंकित कर दें ।									
(iv) The test booklet no. and OMR sheet no. should be same. In case of discrepancy in the number, the candidate should	(iv) प्रश्न पुस्तिका नं. और OMR पत्रक नं. समान होने चाहिए । यदि नंबर भिन्न हों, तो परीक्षार्थी प्रश्न-पुस्तिका / OMR पत्रक बदलने									
immediately report the matter to the invigilator for	के लिए निरीक्षक को तुरंत सूचित करें ।									
replacement of the Test Booklet / OMR Sheet.	4. प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (1), (2), (3) तथा (4) दिये गये									
4. Each item has four alternative responses marked (1), (2), (3) and (4). You have to darken the circle as indicated below on	हैं । आपको सही उत्तर के वृत्त को पेन से भरेकर कीला करना है जैसा कि नीचे दिखाया गया है :									
the correct response against each item.	। ज नाच दिखाया गया ह : उदाहरण : (1) (2) (4)									
Example: ① ② ④ ④	जबिक (3) सही उत्तर है ।									
where (3) is the correct response. 5. Your responses to the items are to be indicated in the OMR	5. प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित									
Sheet given inside the Booklet only. If you mark your	करने हैं । यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिह्नांकित करते हैं, तो उसका मूल्यांकन नहीं होगा ।									
response at any place other than in the circle in the OMR Sheet, it will not be evaluated.	6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढ़ें ।									
6. Read instructions given inside carefully.	7. कूच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ट पर करें ।									
7. Rough Work is to be done in the end of this booklet.	8. यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल									
8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space	नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई									
allotted for the relevant entries, which may disclose your	अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये									
identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using	उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये									
white fluid, you will render yourself liable to disqualification.	अयोग्य घोषित किये जा सकते हैं । 9. आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को									
9. You have to return the Original OMR Sheet to the invigilators at the end of the examination compulsorily and must not	लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन									
carry it with you outside the Examination Hall. You are,	से बाहर न लेकर जायें । हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न-पुस्तिका									
however, allowed to carry original question booklet on	अपने साथ ले जा सकते हैं। 10. काले बाल प्वाईट पेन का ही इस्तेमाल करें।									
conclusion of examination. 10. Use only Black Ball point pen.	10. काल बाल प्याइट पन का हा इस्तमाल कर । 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का									
11. Use of any calculator or log table etc., is prohibited.	प्रयोग वर्जित है ।									
12. There is no negative marks for incorrect answers.	12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं ।									

JA-087-17 P.T.O.

COMPUTER SCIENCE & APPLICATIONS

Paper – II

Note: This paper contains **fifty (50)** objective type questions of **two (2)** marks each. **All** questions are compulsory.

1. Consider a sequence F_{00} defined as :

$$F_{00}(0) = 1, F_{00}(1) = 1$$

$$F_{00}(n) = \frac{10 * F_{00}(n-1) + 100}{F_{00}(n-2)} \text{ for } n \ge 2$$

Then what shall be the set of values of the sequence F_{00} ?

(1) (1, 110, 1200)

- (2) (1, 110, 600, 1200)
- (3) (1, 2, 55, 110, 600, 1200)
- (4) (1, 55, 110, 600, 1200)

2. Match the following :

List - I

List – II

- a. Absurd
- i. Clearly impossible being contrary to some evident truth.
- b. Ambiguous
- ii. Capable of more than one interpretation or meaning.
- c. Axiom
- iii. An assertion that is accepted and used without a proof.
- d. Conjecture
- iv. An opinion preferably based on some experience or wisdom.

Codes:

- a b c d
- (1) i ii iii iv
- (2) i iii iv ii
- (3) ii iii iv i
- (4) ii i iii iv

Paper-II 2 JA-087-17

3. The functions mapping R into R are defined as :

$$f(x) = x^3 - 4x$$
, $g(x) = \frac{1}{x^2 + 1}$ and $h(x) = x^4$.

Then find the value of the following composite functions:

 $h_0g(x)$ and $h_0g_0f(x)$

- (1) $(x^2 + 1)^4$ and $[(x^3 4x)^2 + 1]^4$
- (2) $(x^2 + 1)^4$ and $[(x^3 4x)^2 + 1]^{-4}$
- (3) $(x^2 + 1)^{-4}$ and $[(x^2 4x)^2 + 1]^4$
- (4) $(x^2 + 1)^{-4}$ and $[(x^3 4x)^2 + 1]^{-4}$
- **4.** How many multiples of 6 are there between the following pairs of numbers ?

0 and 100 and -6 and 34

(1) 16 and 6

(2) 17 and 6

(3) 17 and 7

- (4) 16 and 7
- 5. Consider a Hamiltonian Graph G with no loops or parallel edges and with $|V(G)| = n \ge 3$. Then which of the following is true?
 - (1) $\deg(v) \ge \frac{n}{2}$ for each vertex v.
 - (2) $|E(G)| \ge \frac{1}{2}(n-1)(n-2) + 2$
 - (3) $\deg(v) + \deg(w) \ge n$ whenever v and w are not connected by an edge.
 - (4) All of the above
- **6.** In propositional logic if $(P \rightarrow Q) \land (R \rightarrow S)$ and $(P \lor R)$ are two premises such that

$$\frac{(P \to Q) \land (R \to S)}{P \lor R}$$

Y is the premise:

(1) $P \vee R$

(2) $P \vee S$

(3) Q v R

(4) $Q \vee S$

7.		_		ed in ECL is possible because transistors which they are never driven into
	(1)	Race condition	(2)	Saturation
	(3)	Delay	(4)	High impedance
8.		nary 3-bit down counter uses J-K fli		s, FF_i with inputs J_i , K_i and outputs Q_i , in for the input from following, is
	I.	$J_0 = K_0 = 0$		
	II.	$J_0 = K_0 = 1$		
	III.	$J_1 = K_1 = Q_0$		
	IV.	$J_1 = K_1 = \overline{Q}_0$		
	V.	$J_2 = K_2 = Q_1 Q_0$		
	VI.	$J_2 = K_2 = \overline{Q}_1 \overline{Q}_0$		
	(1)	I, III, V	(2)	I, IV, VI
	(3)	II, III, V	(4)	II, IV, VI
9.	Conv	vert the octal number 0.4051 into its ed	quivale	ent decimal number.
	(1)	0.5100098	(2)	0.2096
	(3)	0.52	(4)	0.4192
10.	The	hexadecimal equivalent of the octal nu	ımber	2357 is :
	(1)	2EE	(2)	2FF
	(3)	4EF	(4)	4FE
11.	Whic	ch of the following cannot be passed to	o a fun	ction in C++?
	(1)	Constant	(2)	Structure
	(3)	Array	(4)	Header file
Pape	er-II		4	JA-087-17

12.	Whi	ch one of the following is correct for o	overloa	aded functions in C++?				
	(1)	Compiler sets up a separate function for every definition of function.						
	(2)	Compiler does not set up a separate	functio	on for every definition of function.				
	(3)	Overloaded functions cannot handle	differe	ent types of objects.				
	(4)	Overloaded functions cannot have sa	ame nu	imber of arguments.				
13.	Whi	ch of the following storage classes have	ve gloł	pal visibility in C/C++ ?				
	(1)	Auto	(2)	Extern				
	(3)	Static	(4)	Register				
14.	Whi	ch of the following operators cannot b	e over	loaded in C/C++ ?				
	(1)	Bitwise right shift assignment						
	(2)	Address of						
	(3)	Indirection						
	(4)	Structure reference						
15.	If X	is a binary number which is power of	2, the	n the value of				
	X &	(X - 1) is:						
	(1)	1111	(2)	0000				
	(3)	1000	(4)	0001				
16.	An a	attribute A of datatype varchar (20) h	nas val	ue 'Ram' and the attribute B of datatype				
	char	(20) has value 'Sita' in oracle. The	attribu	te A has memory spaces and B				
	has _	memory spaces.						
	(1)	20, 20	(2)	3, 20				
	(3)	3, 4	(4)	20, 4				
JA-	087-1	7	5	Paper-II				

17.	resu	grity constraints ensure that changes It into loss of data consistency. Which we would be into grity constraints?			•
		examples of integrity constraints? An instructor Id. No. cannot be pull	provid	lad Int	ructor Id No. baing primary kay
	(A)	An instructor Id. No. cannot be null		ied IIIt	fuctor id No. being primary key.
	(B)	No two citizens have same Adhar-Io	d.		
	(C)	Budget of a company must be zero.			
	(1)	(A), (B) and (C) are true.			
	(2)	(A) false, (B) and (C) are true.			
	(3)	(A) and (B) are true; (C) false.			
	(4)	(A), (B) and (C) are false.			
18.		M and N be two entities in an E-R di re two relationship between M and N			mple single value attributes. R_1 and
	R ₁ is	s one-to-many and R ₂ is many-to-man	ny.		
		minimum number of tables required	d to rep	resent	M , N , R_1 and R_2 in the relational
	mod	el are			
	(1)	4	(2)	6	
	(3)	7	(4)	3	
19.	Con	sider a schema R(MNPQ) and func	tional c	lepend	encies $M \to N$, $P \to Q$. Then the
	deco	omposition of R into $R_1(MN)$ and R_2	(PQ) is		·
	(1)	Dependency preserving but not loss	sless joi	n	
	(2)	Dependency preserving and lossless	s join		
	(3)	Lossless join but not dependency pr	eservin	g	
	(4)	Neither dependency preserving nor	lossles	s join.	
Pane	er-II		6		JA-087-17

- **20.** The order of a leaf node in a B⁺ tree is the maximum number of children it can have. Suppose that block size is 1 kilobytes, the child pointer takes 7 bytes long and search field value takes 14 bytes long. The order of the leaf node is ______.
 - (1) 16

(2) 63

(3) 64

- (4) 65
- **21.** Which of the following is true for computation time in insertion, deletion and finding maximum and minimum element in a sorted array?
 - (1) Insertion -0(1), Deletion -0(1), Maximum -0(1), Minimum -0(1)
 - (2) Insertion -0(1), Deletion -0(1), Maximum -0(n), Minimum -0(n)
 - (3) Insertion 0(n), Deletion 0(n), Maximum 0(1), Minimum 0(1)
 - (4) Insertion O(n), Deletion O(n), Maximum O(n), Minimum O(n)
- 22. The seven elements A, B, C, D, E, F and G are pushed onto a stack in reverse order, i.e., starting from G. The stack is popped five times and each element is inserted into a queue. Two elements are deleted from the queue and pushed back onto the stack. Now, one element is popped from the stack. The popped item is ______.
 - (1) A

(2) B

(3) F

- (4) G
- **23.** Which of the following is a valid heap?

(1) A

(2) B

(3) C

(4) D

24.	a tab	ole of	size		nere n ≤					ns and is use collisions i		•
	(1)	1						(2)	1/n			
	(3)	1/m						(4)	n/m			
25.	Whi	ch of	the fo	llowin	ng stater	nents i	s false ?)				
	(A)	Optimal binary search tree construction can be performed efficiently using dynamic programming.										
	(B)	Brea	adth-f	ïrst se	arch car	not be	used to	find	connecte	ed componer	nts of a grap	oh.
	(C)		en the quely.	•	x and po	ostfix v	valks of	a bin	ary tree,	the tree can	not be re-co	onstructed
	(D)	Dep	th-fir	st-sear	ch can l	oe usec	l to find	the c	onnected	d component	s of a graph	1.
	(1)	A						(2)	В			
	(3)	C						(4)	D			
26.	Mato					and Pro	otocols f	or a u	ser brow	vsing with S	SL:	
	a.	App	olicatio	on of l	layer	i.	TCP					
	b.	Trai	nsport	layer	6	ii.	IP					
	c.	Net	work !	layer	31.	iii.	PPP					
4	d.	Data	alink l	layer		iv.	HTTP					
	Cod	es:										
		a	b	c	d							
	(1)	iv	i	ii	iii							
	(2)	iii	ii	i	iv							
	(3)	ii 	iii	iv	i 							
Pane	(4)	iii	i	iv	ii		<u> </u>	2				IA-087-17

27.		maximum size of ow is	the d	ata that the	applica	ation layer can pass on to the TCP layer
	(1)	2 ¹⁶ bytes			(2)	2 ¹⁶ bytes + TCP header length
	(3)	2 ¹⁶ bytes – TCP h	eader	length	(4)	2 ¹⁵ bytes
28.	A pa	acket whose destina	tion i	s outside the	local T	CP/IP network segment is sent to
	(1)	File server			(2)	DNS server
	(3)	DHCP server			(4)	Default gateway
29.		ance vector routing	_	•		routing algorithm. The routing tables in
	(1)	automatically				
	(2)	by server				
	(3)	by exchanging inf	orma	tion with neig	ghbour	nodes
	(4)	with back up data	base			
30.		ink state routing al	gorit	hm after con	structi	on of link state packets, new routes are
	(1)	DES algorithm			(2)	Dijkstra's algorithm
	(3)	RSA algorithm			(4)	Packets
31.	Whi	ich of the following	string	gs would mat	ch the	regular expression : $p+[3-5]*[xyz]$?
	I.	p443y	II.	p6y		
	III.	3xyz	IV.	p35z		
	V.	p353535 <i>x</i>	VI.	ppp5		
	(1)	I, III and VI only			(2)	IV, V and VI only
	(3)	II, IV and V only			(4)	I, IV and V only

32.	Cons	sider the following assembly language	e instru	actions:
	mov	al, 15		
	mov	ah, 15		
	xor a	al, al		
	mov	cl, 3		
	shr a	ax, cl		
	add	al, 90H		
	adc a	ah, 0		
	Wha	at is the value in ax register after execu	ition o	f above instructions ?
	(1)	0270Н	(2)	0170H
	(3)	01E0H	(4)	0370Н
33.	Con	sider the following statements related	to con	npiler construction:
	I.	Lexical Analysis is specified by pushdown automata.	conte	xt-free grammars and implemented by
	II.	Syntax Analysis is specified by regrandene.	ular ex	pressions and implemented by finite-state
	Whi	ch of the above statement(s) is/are con	rect?	
	(1)	Only I	(2)	Only II
	(3)	Both I and II	(4)	Neither I nor II
34.	3AH		the sta	L) of 8085 microprocessor are 49H and tus of carry flag (CF) and sign flag (SF) the instruction, are
	(1)	AL = 0FH; CF = 1; SF = 1		
	(2)	AL = F0H; CF = 0; SF = 0		
	(3)	AL = F1H; CF = 1; SF = 1		

(4) AL = 1FH; CF = 1; SF = 1

35.	Whic	ch of the following statement(s) regarding a linker software is/are true?
	I.	A function of a linker is to combine several object modules into a single load module.
	II	A function of a linker is to replace absolute references in an object module by symbolic references to locations in other modules.
	(1)	Only I
	(2)	Only II
	(3)	Both I and II
	(4)	Neither I nor II
36.		e are three processes P_1 , P_2 and P_3 sharing a semaphore for synchronizing a variable. If value of semaphore is one. Assume that negative value of semaphore tells us how
		y processes are waiting in queue. Processes access the semaphore in following
	ordei	::
	(a)	P2 needs to access
	(b)	P1 needs to access
	(c)	P3 needs to access
	(d)	P2 exits critical section
	(e)	P1 exits critical section
	The f	final value of semaphore will be:
	(1)	0
	(2)	1
	(3)	-1
	(4)	-2
JA-0	087-17	7 11 Paper-II

37.	ns to	access	•					k-a-side Buffer (TLB) and 90 the effective memory access
	time	is:						
	(1)	48ns				(2)	147ns	
	(3)	120ns				(4)	84ns	
38.	Mato	ch the fo	ollowii	ng w.r.t.	. Input/O	utput manage	ment:	
		L	ist – I			Lis	t – II	-071
	a.	Device	e conti	roller	i.			from the store it in
	b.	Device	e drive	r	ii.	I/O schedu	ling	Cil
	c.	Interru	ıpt har	dler	iii.	Performs d	ata transfer	
	d.	Kerne	l I/O s	ubsyste	m iv.	Processing	of I/O reque	st
	Cod	es:						
		a l) (d d				
	(1)	iii i	v i	ii				
	(2)	ii	i i	v iii				
	(3)	iv	i i	i iii				
	(4)	i i	ii i	v ii				
39.	Whi	ch of the	e follo	wing sc	heduling	algorithms m	nay cause star	rvation ?
	a.	First-c	ome-f	irst-serv	ved			
	b.	Round	l Robi	1				
	c.	Priorit	у					
	d.	Shorte	st pro	cess nex	αt			
	e.	Shorte	st rem	aining t	ime first			
	(1)	a, c an	d e			(2)	c, d and e	
	(3)	b, d an	nd e			(4)	b, c and d	
Pape	er-II					12		JA-087-17

- **40.** Distributed operating systems consist of :
 - (1) Loosely coupled O.S. software on a loosely coupled hardware.
 - (2) Loosely coupled O.S. software on a tightly coupled hardware.
 - (3) Tightly coupled O.S. software on a loosely coupled hardware.
 - (4) Tightly coupled O.S. software on a tightly coupled hardware.
- **41.** Software Engineering is an engineering discipline that is concerned with :
 - (1) how computer systems work.
 - (2) theories and methods that underlie computers and software systems.
 - (3) all aspects of software production
 - (4) all aspects of computer-based systems development, including hardware, software and process engineering.
- **42.** Which of the following is not one of three software product aspects addressed by McCall's software quality factors?
 - (1) Ability to undergo change
 - (2) Adaptiability to new environments
 - (3) Operational characteristics
 - (4) Production costs and scheduling
- **43.** Which of the following statement(s) is/are true with respect to software architecture?
 - S1: Coupling is a measure of how well the things grouped together in a module belong together logically.
 - S2 : Cohesion is a measure of the degree of interaction between software modules.
 - S3: If coupling is low and cohesion is high then it is easier to change one module without affecting others.
 - (1) Only S1 and S2

- (2) Only S3
- (3) All of S1, S2 and S3
- (4) Only S1

	(1)	a re	asona	ble ap	proach	when re	equirements	are well-defin	ned.		
	(2)	a us	seful a	pproa	ch whe	en a cust	omer cannot	define requir	ements clear	ly.	
	(3)	the	best a	pproa	ch to u	se for pr	ojects with la	arge developi	ment teams.		
	(4)	a ri	sky m	odel tl	hat rare	ely produ	uces a meani	ngful product	t.		
45.	A so	ftwa	re desi	ign pa	ttern u	sed to er	nhance the fu	nctionality of	f an object at	run-time	is:
	(1)	Ada	apter				(2)	Decorator			
	(3)	Del	egatic	n			(4)	Proxy			
46.	Mate	ch the	e follo	wing	:						
			List	- I			$\mathbf{L}_{\mathbf{i}}$	ist – II	610		
	a.	Aff	iliate l	Marke	eting	i.	- 1	k partners to te. If custome and buy.	_		
	b.	Vir	al Ma	rketing	g	ii.	of-mouth.	r brand on th Receivers we note to their frien	rill send yo		
	c.	Gro	oup Pu	ırchasi	ing	<u></u>		g the dema get a large price.			
	d.	Bar	tering	Onlir	ie	iv.	services wi	g surplus th the proces online by ar	s administer		
1	1	(-47	1	,			receives "po		-	
	Cod	es:									
		a	b	c	d						
	(1)	i	ii	iii	iv						
	(2)	i	iii	ii	iv						
	(3)	iii	ii	iv	i						
	(4)	ii	iii	i	iv						
Pape	er-II						14			JA	-087-17
Pape					-	-	14			JA	-087-17

44.

The prototyping model of software development is:

47.		refers loosely to the proce	ess of semi-	automatically analyzing large databases to
	find	useful patterns.		
	(1)	Datamining	(2)	Data warehousing
	(3)	DBMS	(4)	Data mirroring
48.	Whi	ch of the following is/are true w	r.t. applicat	ions of mobile computing?
	(A)	Travelling of salesman		
	(B)	Location awareness services		
	(1)	(A) true; (B) false.		
	(2)	Both (A) and (B) are true.		
	(3)	Both (A) and (B) are false.		
	(4)	(A) false; (B) true.		
	requ (1) (3)	ired for W-CDMA is 2 MHz 5 KHz	(2) (4)	20 KHz 5 MHz
50.	Whi	ch of the following statements is	s/are true w.	r.t. Enterprise Resource Planning (ERP) ?
	(A)	ERP automates and integrates	majority of	business processes.
	(B)	ERP provides access to inform	nation in a R	eal Time Environment.
	(C)	ERP is inexpensive to implem	ent.	
	(1)	(A) (D) 1 (C) C1		
	(1)	(A), (B) and (C) are false.		
	(2)	(A), (B) and (C) are false. (A) and (B) false; (C) true.		
	, ,			

Space For Rough Work

