**Register Number:** 

Date:

# ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE - 27

#### B.Sc STATISTICS – III SEMESTER

## SEMESTER EXAMINATION – OCTOBER 2019

## ST 318 - STATISTICAL INFERENCE - I

Time: 21/2 hrs

Max: 70 Marks

This question paper has **TWO** printed pages and **THREE** parts

## SECTION – A

## Answer any FIVE of the following:

- 1. Define estimator and estimate with an example.
- 2. Define consistent estimator and mention its invariance property.
- 3. If T is an unbiased estimator for  $\theta$ , prove that T<sup>2</sup> is biased estimator for  $\theta^2$ .
- 4. Mention any three properties of maximum likelihood estimator
- 5. Define confidence interval and confidence coefficient.
- 6. Differentiate between simple and composite hypotheses
- 7. State Neyman -Pearson lemma.

## SECTION - B

## II Answer any FIVE of the following:

- 8. A) Let X1, X2, .... Xn, be a random sample from Exp(θ), obtain sufficient statistic for θ. (4)
  B) Show that Poisson distribution belongs to Power series family. (3)
- 9. A) Consider a random sample of size n from Geometric (θ). Compare following estimators using mean square error criterion
  - (i)  $T_1 = \frac{\sum x}{n}$  (ii)  $T_2 = \frac{\sum x}{n-1}$  (4)

B) Define efficient estimator. Show that if  $T_1$  and  $T_2$  are 2 independent estimator of  $\theta$  then  $T_1+T_2$  is less efficient than  $T_1$  (3)

- 10. Let X1, X2, . . . . Xn, be a random sample from Poisson with mean  $\theta$ . Obtain the maximum likelihood estimator for P(X=0) (7)
- 11. A) Let X1, X2, . . . . Xn, be a random sample from U (a, b). Find the moment estimator of a and b. (5)
  - B) Distinguish between parameter and statistic. (2)



5 x 3 = 15

5 x 7 = 35

| 12. A) Obtain 100(1 – $\alpha$ )% confidence interval for the unknown parameter $\mu$ of when $\sigma$ is unknown.                                                                                  | normal population<br>(4)        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| B) Explain Pivotal Quantity method of constructing confidence interval.                                                                                                                             | (3)                             |
| <ul> <li>13. A) Define following terms <ul> <li>(i) p-value</li> <li>(ii) Level of significance</li> <li>(iii) Null and alternative hypothesis.</li> </ul> </li> </ul>                              | (5)                             |
| B) Define non randomized test.                                                                                                                                                                      | (2)                             |
| 14. A) Briefly explain types of errors involved in testing of hypotheses with an e                                                                                                                  | xample (4)                      |
| B) Define critical region with neat diagram                                                                                                                                                         | (3)                             |
| SECTION – C                                                                                                                                                                                         |                                 |
| III Answer any TWO of the following:                                                                                                                                                                | 2 x 10 = 20                     |
| 15. (A) State Neyman Factorization theorem.                                                                                                                                                         | (2)                             |
| (B) If, X~ B(1,P), verify whether $\overline{X_n}$ consistent for P.                                                                                                                                | (5)                             |
| (C) Define maximum likelihood method of estimation                                                                                                                                                  | (3)                             |
| 16. A) Derive $100(1 - \alpha)$ % confidence interval for correlation coefficient.                                                                                                                  | (5)                             |
| B) Derive $100(1 - \alpha)$ % confidence interval for population variance, when X where $\mu$ is unknown                                                                                            | ~ N (μ, σ <sup>2</sup> )<br>(5) |
| 17. A) Derive a most powerful test for testing H <sub>0</sub> : $\mu = \mu_0$ against H <sub>1</sub> : $\mu = \mu_1$ , $\mu_1 > \mu_0$ , when X ~ N( $\mu, \sigma^2$ ) where $\sigma^2$ is unknown. | (7)                             |
| B) Define power of the test and obtain an expression for it                                                                                                                                         | (3)                             |