Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE - 27

B.Sc STATISTICS – III SEMESTER

SEMESTER EXAMINATION – OCTOBER 2019

ST 318 – STATISTICAL INFERENCE – I

Time: 2¹/₂hrs

Max:70 Marks

This question paper has **TWO** printed pages and **THREE** parts

SECTION – A

L Answer any FIVE of the following:

- 1. Define Power series family of distribution? Give any two distributions which are members of power series family
- Distinguish between estimator and estimates?
- State Neymann- Factorization theorem
- Explain the procedure of estimating parameters using method of moments
- 5. Define Confidence Interval and Confidence Coefficient
- 6. What is P-value? How is it useful?
- Define Size of a test. How level of significance is different from size of the test?

SECTION – B

Ш Answer any FIVE of the following: $5 \times 7 = 35$ 8. A) Derive the maximum likelihood estimator probability of success, for Negative binomial distribution number of successes is equal to 5. B) What are the criteria of a good estimator? (5+2)9. A) Explain different types of estimators in Inferential Statistics B) Derive the expression for mean square error of an estimator (4+3)10. A) Let X₁, X₂...X_n, be a random sample from Geometric(p), verify whether sample mean, $\overline{\mathbf{X}}$ is consistent estimator of p or not B) Distinguish between simple hypothesis and composite hypothesis. (5+2)11. A) Explain invariance property of maximum likelihood estimator with an example B) Give the confidence interval for population variance (5+2)

5x 3= 15

12. For a random sample of size 45 from N(μ, σ^2) where σ^2 = 16, then for H₀: μ = 2 against H₁: μ = 4, most powerful test is given by

$$\phi(\Sigma x) = \begin{cases} 1 \ if \ \Sigma x > k \\ 0 \ if \ \Sigma x \le k \end{cases}$$

- A) Determine k such that size of the test is 5% ($Z_{\frac{\alpha}{2}} = 1.96$)
- B) Obtain an expression for power of above test (5+2)
- 13. A) What are the different types of errors involved in testing? Explain with an example
 - B) Define Minimum Variance Unbiased Estimator (5+2)
- 14. A) Derive the confidence interval for ratio of two population variances.
 - B) Give the confidence interval for population proportion (5+2)

SECTION - C

III Answer any TWO of the following:

15. A) Define maximum Likelihood Estimator. Suppose that X_1, \dots, X_n form a random sample from a uniform distribution on the interval (0, θ), where of the parameter $\theta > 0$ but is unknown. Derive MLE of θ .

B) Explain the steps involved in testing of a hypothesis (6+4)

- 16. A) If X~Poisson (λ). Obtain an unbiased estimator for parameter λ
 B)Let X₁, X₂...,X_n be a random sample from N (μ₀,σ²) then obtain the most powerful test for testing H₀: σ = σ₀ v/s H₁: σ = σ₁ (σ₀> σ₁) (4+6)
- 17. A) Obtain $100(1 \alpha)$ % confidence interval for population mean when population variance unknown

B) What do you mean by Single Parameter Exponential family? Prove that Binomial distribution with parameters (n = 15, & p) belongs to Single Parameter Exponential family.

C) State the sufficient conditions for consistency (4+4+2)

2 x 10 = 20