St. Joseph's College (Autonomous), Bengaluru – 27 End Semester Examination, April, 2018 IV Semester M.Sc. Chemistry CHDE 0417 – Organic Synthesis

Time: 21/2 hours

Max. Marks:70

Note: This question paper has pages and 3 sections

PART A

Answer any SIX of the following:

6 X 2 = 12

- 1. Mention any two conditions that favour C-alkylation over O-alkylation during alkylation reactions of enolates.
- 2. What is 'latent functionality'? Explain with an example.
- 3. What are imine anions? Give an example of their application in alkylation of aldehydes.
- 4. What is chemoselectivity? Explain with an example.
- 5. What is Dieckmann condensation reaction? Give an example.
- 6. Write the mechanism of Woodward dihydroxylation reaction.
- 7. How will you bring about the following conversion?

8. How will you synthesise the following olefin using Peterson's olefination reaction?

PART B

Answer any FOUR of the following:

4 X 12 = 48

- 9. a) Write a note on 'two-group C-C disconnections' involving 1,3- and 1,5-difunctionalised compounds.
 - b) Predict the structures of A to F in the following reactions:

- b) Discuss the role of protecting groups by taking the protection of three different functional groups. Explain with an example for each functional group.
- 12.a)How will you synthesise the following compounds suing the reactions mentioned below:

- b) What is Sharpless asymmetric hydroxylation reaction? Give an example. Explain the role of each reagent in the reaction. (6+6)
- 13. Write mechanism of the following reactions using suitable examples:
 - a) Hofmann-Loffler-Freytag reaction
 - b) Shapiro reaction
 - c) Ugi reaction. (3x4)
- 14. Predict the reagent(s) required for the following conversions and write mechanism for the same: (3x4)

PART C

Answer any TWO of the following:

2 X 5 = 10

15. Using the indicated starting materials and any other organic compound/reagent you may need, give the synthesis of the target molecule:

16. a) Carry out the following conversion:

b) Predict the structure of major product formed in the following reaction.

17. Write structure of any tripeptide and explain its synthesis using Merrifield resin method.

-----End of questions-----